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Abstract. Graph pattern mining (GPM) boils down to traversing the
space of common sub-graphs while assessing their interestingness whereby
a key concern is the non redundancy (each graph tested only once). We
aim at generalized graph patterns (GGP), i.e. with hierarchies on both
vertex and edge labels. While most GP and GGP miners rely on canoni-
cal encodings for graphs, those involve costly graph manipulations. Here,
we propose an original approach that guarantees canonicity without ex-
plicit canonicity tests. To that end, we design an adapted encoding and a
novel pattern refinement operator mixing edge-wise extensions with pat-
tern joins. The resulting jCan miner largely outperforms its competitors.

1 Introduction

Graph patterns (GP) [1] are a versatile pattern format reaching over a wide range
of compatible datasets, from molecular models to social networks to arbitrary
linked data triple stores. Yet GP mining (GPM) is known for its high computing
costs, primarily stemming from expensive duplicate pattern avoidance/detection
and support computing primitives, both heavily relying to (sub-)graph isomor-
phism [9]. Generalized patterns [11], in turn, involve abstract items –as opposed
to individual ones in plain pattern– whereby these are drawn from a taxonomy
or a class hierarchy. They bring higher abstraction and intelligibility where plain
patterns would drown a user into less frequent and overly detailed patterns.
Generalized graph patterns (GGP) combine the flexibility of the former with
the abstraction power of the latter [5].

GPM methods and generalized variants thereof rely –to varying degrees– on
canonical encoding schemes [10, 8], i.e. unique representations. Each encoding is
tested to ensure it corresponds to the canonical form of a graph. By introducing
an order over encodings and only keeping track of canonical ones it is possible
to enumerate every sub-graph only once. Yet, most approaches bump into large
numbers of non-canonical encodings which are expensive to detect/identify.

From there, we can characterize existing approaches over two axes represent-
ing (1) ability to distinguish canonical encodings and/or duplicate candidates
(i.e., spreading), (2) use of hierarchical information for pruning purposes (i.e.,
flatness). First, on one end of the spreading spectrum, methods fully rely on
computationally expensive encoding schemes [15, 10] while at the other extreme,
they forgo completely their usage during enumeration and opt for a particularly
expensive duplicate detection at a later stage [3]. Secondly, on the flatness axis
a number of methods renounce to exploit any hierarchical information [15] while
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other adopt a divide-and-conquer (D&C) approach [3, 8] where topologies are
captured followed by a label-refinement step. As a general trend, the higher re-
liance on canonical encoding the less a method exploits hierarchical information.

As trade-off, we propose to combine the two-step approach with a suitable
canonical form for patterns, namely the DFS-encoding from gSpan. To ensure it
can seamlessly work on GGPs, our pattern language is first extended to emulate
is-a hops via edge-wise extension: A dedicated edge type is added labelled by
is-a. Also, a proper ranking of the classes from the taxonomy ensures the encod-
ing complies to those edges’ semantics. While these two tools might –combined
with the canonicity tests à la gSpan– seem enough for listing all canonical DFS-
encodings of FGGP, such a strategy faces some serious issues. Indeed, it risks
an excessive use of those tests, up to a prohibitive total cost. More dramatically,
the subspace of canonical DFS-encodings of all label refinements of the generic
topologies from step 1), proved disconnected w.r.t. to pure is-a edge-wise exten-
sions. Spelled differently, some canonical DFS-encodings have no parent DFS-
encoding that is both canonical and diverges by a single is-a edge.

We designed a more general DFS encoding-based approach with a join op-
eration on GGP encodings exploiting specialization links between GGPs from
different topology-induced subspaces of the overall pattern space and sets of au-
tomorphic graph vertices (orbits). The former means it breaks the D&C nature
of the two-step approach as dependencies arise between subspaces. Yet, its merit
is the join primitive preserves the canonicity of its arguments, i.e., the encom-
passing miner jCan (for Join Canonical) skips a large number of canonicity tests
w.r.t. Taxogram, and two versions of gSpan (experimentally observed). Here we
discuss vertex label specializations yet jCan works also on edge label ones.

In what follows, Sec. 2 presents surveys GGP miners. Then, Sec. 3 provides
properties and algorithmic details. Next, Sec. 4 compares jCan to its competitors
and points to some limitations. Finally, Sec. 5 concludes.

2 Related work

Our data are directed labelled (multi-)graphs, e.g. RDF or property graphs. In a
graph g = ⟨V,E⟩, V is a set of vertices, and E ⊆ (V × V ) a (multi-)set of edges.
We use ν(g) and ϵ(g) to denote the sets of vertices and edges of g, respectively,
while λ : (V ∪ E) → H⟩ maps vertices and edges onto a label hierarchy H.

Canonical encodings. Let G the set of all graphs (g ∈ G), ∼= denote labelled
graph isomorphism, and [ ]∼= an equivalence classes of isomorphic graphs in G.
The related subgraph isomorphism is denoted by ⊣∼=. It induces the generality
relationship ⊑ between patterns in our pattern space Lp (set of all patterns).
The order induced by sub-graph isomorphism between graphs in G is readily
extendable between [ ]∼=. An equivalence class-based partitioning of graph rep-
resentations helps formulating the FGPM task as a traversal of each [ ]∼= class
exactly once, navigating between classes exploiting the ⊣∼= relation.

Instead of explicitly manipulating [ ]∼=-classes or members thereof, encodings
can be used: They are sets of ordered fixed-size tuples from a universe of tu-
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ple items. An order over encodings enables a (complete) enumeration thereof,
smoother than directly working on graphs.

Encoding a graph g to one of its encodings Γ (g) amounts to code each edge
e with a tuple t to form Γ (g) = {t = encode(e) | ∀ e ∈ ϵ(g)}. The exact shape
of edge-tuples may vary yet follows the template ⟨πΓ (n1), πΓ (n2), . . . ∈ N, l0 =
λ(e), l1 = λ(n1), l2 = λ(n2), . . . ∈ Λ⟩ where nx represents unique identifiers for
vertices, lx represents label information, and πΓ is a ranking for vertices (vertex
subscript in [14]). With each encoding scheme a total order <T between tuples
exists (usually by comparing position and labels) inducing πΓ .

To introduce canonical encodings, let [ ]Γ be equivalence classes of equiva-
lent encodings, i.e., the sets of encodings Γ (g), Γ (g′) s.t. g ∼= g′. Within each
[g]Γ or [Γ (g)]Γ class, only a unique member –canonical– represents the set of all
equivalent encodings (same [ ]Γ ), as well as all graphs within [g]∼=. The criteria
for an encoding’s canonicity is method-specific yet usually exploits an extremum
criteria (e.g. min or max within [ ]Γ ). Using encodings an FPGM method ex-
ploits ⊆ relationship between members of [ ]Γ -classes instead of a largely more
complex ⊣∼= one between members of [ ]∼=-classes. Therefore, a non-redundant
graph pattern enumeration enters every [ ]∼= exactly once to determine the
frequency of the pattern (in Lp) by exploring every [ ]Γ for canonical encodings.

FGPM methods. Main differences between methods lie in the design of
their graph encoding scheme and their traversal strategy over the boolean lat-
tice formed by the ⊣∼= relationship1. Historically, AGM [6] comes first closely
followed by FSG [7] and #-Path [12]. All three exploit an apriori -like explo-
ration strategy (i.e., level-wise) and propose similar graph encoding spaces by
exploiting serializations of adjacency matrices.

In short, all three suffer from a high cost candidate generation strategy.
Indeed, they need to maintain/generate non-canonical patterns to reach com-
pleteness, in addition to having to explicitly manipulate [ ]Γ subsets to ensure
no duplicates are produced. AGM distinguishes a unique canonical member of
[ ]Γ as the lexicographically smallest serialization of a vertex-sorted adjacency
matrix or min({Γ (g) ∈ [g]Γ }). Alternatively, FSG re-uses the same canonicity
criteria as AGM and also follows a join-based strategy. Yet it exploits a common
immediate sub-graph (designated as core [7]) and join operations can output
more than one candidate, including potential encodings within the same [ ]Γ .

Soon after, gSpan [14], FFSM [4] and MoFa [2] propose more refined encoding
spaces, where all –and only– canonical encodings are covered by a unique sub-
tree2. Each canonical encoding must have a unique parent which is also canonical:
every prefix of a canonical Γ (g) is also a canonical one. Conversely, any (prefix-
preserving) extension of a non-canonical Γ (g) is also not a canonical Γ (g). From
there, anti-monotony of the canonicity status with regards to the precedence
relationship can be established [14].

1 Aspects like support computation or internal data structures are assumed irrelevant
here since orthogonal to our designs and interchangeable between methods.

2 MoFa has two iterations, canonicity status is only introduced in the second.
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Moreover, all three share an appealing property for canonical Γ (g): building
and/or verifying canonical encodings is a purely local operation, i.e., only g and
Γ (g) are required. Basically, they propose a pattern decomposition into a unique
ordered spanning tree complemented by a set of cycles (implicit in FFSM). In
short, each pattern is incrementally (edge-by-edge) constructed using a minimal
coverage strategy: BFS for FFSM and MoFa, and DFS for gSpan. Edges covered
by the spanning tree are denoted as non-cyclic while those not covered are
denoted as cyclic edges (resp. forward and backward edges in [14]). To extend
an encoding one must add a new tuple larger than any other w.r.t. <T . Yet,
successfully extending an encoding is not sufficient to produce a canonical one:
Γ (g′) a canonical extension of Γ (g) must have Γ (g) as immediate prefix. As a
result, for gSpan a new forward edge is appended to a path from the root vertex
and the one added last (due to DFS). That path-shaped induced sub-graph is
known as the rightmost path and we denote it as →

ρ (Γ (g)).
As an example, Fig. 2 ’s pattern p contains two (l,_, q) triples and one (c,_, l)

around a common “l”-labeled vertex. First look for the smallest triple using only
label information: assuming q < c < l, any of the two (l, _, q) triples can form the
tuple ⟨0, 1, q,_, l⟩. Next, incrementally cover p’s graph looking for the smallest
tuple from any edge neighbouring →

ρ (Γ (g)) (requires all embeddings for partial
cover) and update it. The final result is {⟨0, 1, q,_, l⟩, ⟨1, 2, l,_, q⟩, ⟨1, 3, l,_, c⟩}.

Later, Gaston [9] proposes to break down the pattern search space into three:
a space for paths (no vertex with degree > 2), one for trees (no paths, no cycles)
and one for graphs where only patterns with cycles admitted. Most notably, its
ad hoc enumeration strategy allows to skip expensive canonicity checks on paths
and trees but remains somewhat lacking for patterns with cycles. Here, it requires
an explicit canonization (i.e., build the code) and a check into a repository of
already explored cyclic graph patterns.

In summary, existing FGPM methods which rely on joins need –to some
degree– to maintain non-canonical encodings and/or output more than one
unique candidate. Here, we re-use gSpan’s encoding spaces with join opera-
tions yet show that we can bypass the above limitations and offer guarantees
for canonicity status.

GGPM methods. GGPM was introduced in [5] adapting AGM [6] to tax-
onomies of vertex/edge labels. While the intended refinement operator(s) is not
fully specified, it is understood the canonical encoding scheme of AGM is reused,
i.e. duplicates are removed level-wise, which is expensive.

Taxogram [3] was, arguably, the first dedicated FGGP miner, albeit with
vertex-only label taxonomies. It applies a D&C strategy over re-labelled data:
At step 1), it runs gSpan on graphs where each label is replaced by its top-level
super-class. It thus discovers all FGPs (topologies). Next, in a D&C mode, each
pattern is label refined by successive is-a hops on its vertices, up till yielding
an infrequent specialization thereof. With no canonicity considerations, isomor-
phism checks are performed eventually to spot duplicates.

Zhang et al. [15] studied mining a limited flavor of FGGP, called link patterns,
from RDF data provided with a domain ontology. Similar to Taxogram, they re-
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label their data graphs and then use gSpan in a pure GPM mode. Yet, in a key
departure from the above approach, they only use the most specific compatible
type in the ontology to replace a resources ID in the respective graph vertex.

Two FGGP miners were studied in [10]: A first one emulates the two-step
approach of Taxogram while, reportedly, reflecting the DFS encoding from 1)
(also done by gSpan) in 2). However, the crucial impact of label refinement on
canonicity isn’t examined. The second method avoid relies on data augmentation
to taxonomy traversals: Beside re-labelling a vertex with the respective top-level
class, it appends to that vertex the respective taxonomy path going down to the
original label node. Thus, is-a hops are simulated by edge-wise extensions, i.e.
FGGPM is reduced to FGPM. Yet, as admitted in the paper, this increases the
number of costly isomorphism tests.

To sum up, pure data-augmentation methods [15, 10] re-use GP encoding
spaces (no adaptation). On the flip side, the hierarchy being lost on them, they
can’t use the is-a links to prune the highly combinatorial pattern space (due to
the larger label set). Search-wise spelled, these spaces are wider yet shallower.
Conversely, methods performing explicit is-a hops [3, 5] search through narrower
yet deeper spaces. They benefit from hierarchy-based pruning, i.e. avoid nodes
corresponding to is-a hops on infrequent patterns. Yet, such methods pay higher
price for a) spotting the canonical member of [ ]Γ encoding classes or b) remove
duplicate FGGPs in a post-processing step. As a trade-off, we look here at label
hierarchy-aware canonical encoding of patterns that reduces the canonicity test
costs and thus increases scalability.

3 jCan: a novel FGGP miner

Toward richer and more expressive patterns. Our FGGPs capture com-
plex and implicit dependencies in the raw data, as exemplified in Fig. 1 with an
example from a dairy production dataset federating data about milk yield and
composition, animal well-being, herd improvement, etc. Here the complex dy-
namics between life-sciences, production management and quality testing makes
it hard to extract meaningful insights.

Fig. 1: Two FGGPs and a hierarchy (dairy production data).

Both patterns p and p′ represent the same trend at different abstraction lev-
els: A proportion (σ = X) of the cows with above-average risk of mastitis (udder
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inflammatory disease) indicators have indeed experienced shorter and problem-
atic lactations, yet not as their first, strongly suggesting that same disease. On
the right, with provide with an excerpt of a label hierarchy H to clarify the rela-
tionship between vertex labels in the patters. Clearly, p is too generic to convey
any useful information while p′ might be too specific.

We adopt the two-step approach from Sec. 2: (1) mining the frequent generic
topologies from data relabelled with top-level labels from H, (2) refining those
is-a hops. At the second step, given a pattern p, a refinement operator yields
the pattern set {p′ | p ⊑ p′, h(p′) = h(p) + 1} ∩ Lp or, alternatively, the set of
encoding equivalence classes {[g′]Γ | g′ ⊣∼= p.g, |ϵ(g′)| = |ϵ(p.g)| + 1}, i.e., the
sets of encoding classes corresponding to all immediate specializations of p.

jCan focuses on the specialization step using a hybrid scheme of join and
pattern-growth operations. It exploits the handy properties of gSpan’s encoding
space (see Sec. 2) to propose an original DFS encoding-based specialization.

DFS-encoding of specializations. A specialization operation corresponds
to a label replacement: Given a vertex, its label is replaced by one of its im-
mediate descendants in H. Yet, with a label replacement-based operation, given
the canonical enumeration mechanism in gSpan, a GGP encoding can hardly
be a canonical predecessor of its specializations [8]. In the best case scenario,
encodings for a pattern and its specialization could be siblings, i.e., differing
only on the highest DFS-tuple. In a less favourable case might have no common
ancestor within gSpan’s pattern space. Only topology extensions are admissible
operations in gSpan. Thus, we opt for representing each downward shift in H by
a dedicated DFS tuple. We call that operation DFS-specialization.

Definition 1. A DFS-specialization operation, analogous to [14]’s DFS-extension,
adds a (forward) edge to a DFS-encoding Γ (g) yet is not restricted to →

ρ (Γ (g)).

As an example, in Fig. 1 instead of replacing a label h (e.g., QualityControl)
by its immediate descendant h′ (e.g., AcceptedQualityControl) we add a new
DFS-tuple ⟨x, y, h, is-a, h′⟩. From there, a canonical DFS-specialization corre-
sponds to a DFS-specialization operation producing a canonical encoding.

A precedence relation between canonical encodings is necessary in order to
form an exploitable spanning tree over the pattern space. For gSpan, ≺dfs be-
tween canonical encodings (Sec. 2) imposes (1) extending an encoding with
only larger DFS-tuples, (2) ensuring that the resulting encoding Γ (g) is minimal
within its [g]Γ , and (3) preserves its parent’s encoding as prefix. To comply to
the above constraints the is-a edge label must have the largest rank in πλ among
all edge labels. Moreover, all descendants h′of a given vertex label h must satisfy
πΓ (h

′) > πΓ (h), for the same reason3.

Specializations through joins. We expand upon results from [14]. Prop. 1
characterizes canonicity status for both prefix and non-prefix extensions (we
must consider all vertices, outside →

ρ becomes allowed) of a canonical Γ (g). We
exploit automorphism orbits which have largely ignored by the FGPM literature.
3 For a class to rank lower than subclasses we use a depth-first prefix traversal of H.
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In short, automorphism orbits Ω(g) are sets of equivalent vertices w.r.t a graph
g’s topology and labeling. If two vertices v and v′ share the same orbit, then
there exists a self-isomorphism over g where v and v′ are mapped to each other4.

Property 1. Given a canonical DFS-encoding Γ (g) for a graph g, its set of auto-
morphism orbits Ω(g), extending Γ (g) with a forward tuple t = ⟨πΓ (v), πΓ (v

′), , , ⟩
cannot produce a canonical encoding of a super-graph of g if :

1. v ∈ →
ρ (Γ (g)) and v, v′ ∈ o, πΓ (v

′) > πΓ (v) yet v′ ∈ ν(→ρ (Γ (g)));
2. v ∈ →

ρ (Γ (g)) and at least one other member of its orbit is outside →
ρ (Γ (g));

3. v ̸∈ →
ρ (Γ (g)) and πΓ (v) is not the smallest in its orbit outside →

ρ (Γ (g)).

Prop. 1 helps a priori prune non-canonical encodings but is not sufficient to
guarantee a canonical one (tuple labels can influence canonicity status): using
only vertex ranking information makes possible to skip many expensive tests.

For a graph representation g, one of its orbits o ∈ Ω(g) and a fixed forward
DFS-tuple t, extending any vertex v within o with t, will result in a different
Γ (g′) with g ⊣∼= g′ yet within the same [g′]Γ . Among those only a unique one
is [g′]Γ ’s canonical Γ (g). After performing that canonical extension operation, o
does not contain v anymore and by iteratively repeating the same process, one
can induce an order on vertices of the same orbit where lower ranking vertices
must be extended first to result in a canonical Γ (g). Invariably, vertices outside
→
ρ will rank lower than those within while for vertices on →

ρ , deeper vertices
will rank lower. Hence, Property 1 provides the overall enumeration scheme: get
extensions outside →

ρ first, then in a decreasing order, explore →
ρ -extensions5.

Property 2. Given Γ (g) a (canonical) DFS-encoding, ∀x ∈ ν(g) s. t. x /∈ →
ρ (Γ (g)),

∃ Γ (g′) ≺dfs Γ (g) and exists x′ ∈ →
ρ (Γ (g′)), s.t. πΓ (g′)(x

′) = πΓ (g)(x).

Prop. 2 spans over ≺dfs stating for any vertex outside →
ρ (Γ (g)), there is at

least one (possibly non direct) ancestor g′ ≺dfs g, for which that vertex is in
→
ρ (g′). Consequently, the πΓ (g)(x)-th vertex in Γ (g′) can be DFS-specialized,
yielding a canonical encoding. With Γ (g′) direct prefix of Γ (g), it is immediate
that any DFS-specialization on →

ρ (g′), say g′′, shares a common |Γ (g)|-subgraph
with g. Let Γ (g′′) − Γ (g′) = t1 and Γ (g) − Γ (g′) = t2. Simply put, g′′′ =
Γ (g) ∪ {t1} ∪ {t2} is a valid DFS encoding for one of g’s DFS-specializations.

Property 3. Given a DFS-encoding Γ (g) of a graph g, ∀Γ (g′) ≺dfs Γ (g), any
non-→ρ extension of Γ (g) leading to a canonical Γ (g′′) can be obtained by a join
operation between Γ (g) and a DFS-specialization descendant of Γ (g′).

Prop. 3 expands on Prop. 2 by allowing for join operations between DFS-
encodings sharing an identical prefix (yet not necessary immediate). Join op-
erations (denoted ⋊⋉) are well-known in frequent pattern mining [4]. Instead of
extending a pattern, ⋊⋉ combines two patterns having a common parent in the
pattern space: it corresponds to extending the common parent with the differ-
ences between both siblings (joined pattern is a common descendant).
4 Also, Ω(g) constitutes a complete and disjoint partitioning of ν(g).
5 Prop. 1 helps prune gSpan candidate encodings; for backward a similar one exists.
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Fig. 2: Overview of jCan pattern space traversal.

As an example, consider pattern p in Fig. 2. It contains two (l, _, q) triples
and one (c, _, l) around a common “l”-labeled vertex. First look for the smallest
triple using only label information: assuming q < c < l, any of the two (l, _, q)
triples can form the tuple ⟨0, 1, q,_, l⟩. Next, incrementally cover p’s graph by
looking for the smallest possible tuple from any edge neighbouring →

ρ (Γ (g)). The
final result is {⟨0, 1, q,_, l⟩, ⟨1, 2, l,_, q⟩, ⟨1, 3, l,_, c⟩} corresponding the vertex
rankings annotating each vertex in Fig 2.

Definition 2. For a generic topology pattern p, an immediate ancestor topology
p′′ and one of its specializations p′, we define p ⋊⋉ p′ as,

{t | t ∈ Γ (p′.g)}︸ ︷︷ ︸
All DFS-tuples in Γ (p′.g)

∪ {shift(t1 = max({t ∈ Γ (p.g)}), |ν(p′.g)| − |ν(p′.g)|})︸ ︷︷ ︸
Highest tuple in Γ (p.g), shifted πΓ (v_) accordingly

.

Our join operation combines a canonical Γ (p.g) from generic topology p
and a canonical Γ (p′.g) for a DFS-specialization descending from p’s ancestor
in Lp, p′′. Conceptually, ⋊⋉ extends the DFS-encoding a common core between
p.g and p′.g with one DFS-tuple representing a specialization and another DFS-
tuple representing a topology extension, respectively from Γ (p′.g) and Γ (p.g).
Every Γ (p⋊⋉.g) has two “canonical” parents: a generic topology p and a DFS-
specialization p′ of an immediate ancestor of p. Moreover, p ⋊⋉ p′ amounts to
Γ (p⋊⋉.g) = Γ (p′.g)∪{t1} where t1’s vertex rankings must be increased6 to reflect
the number of out-of-→ρ (Γ (p.g)) DFS-specializations in Γ (p′.g). Here, t1 ranks
highest thus Γ (p′.g) is a direct prefix of Γ (p⋊⋉.g). The reason is p.g’s newest
vertex w.r.t p′′.g stems from →

ρ (Γ (p′.g)), →
ρ (Γ (p′′.g)) and →

ρ (Γ (p⋊⋉.g)).
In Fig. 2 consider p: its vertex v s.t. πΓ (v) = 2 is outside →

ρ (Γ (p.g)). It cannot
be directly extended to produce a canonical encoding. Yet, Γ (p′′.g) ≺dfs Γ (p.g)
and ν(→ρ (Γ (p′′.g))) contains v. Here p⋊⋉ = p ⋊⋉ p′.

For an example using encodings, in Fig. 3 the highest DFS-tuple in Γ (p0)
is ⟨3, 6, l,_, q⟩ and Γ (p1) contains one DFS-specialization tuple ⟨2, 3, q, is-a, q′⟩
w.r.t its generic topology. Thus, the shift function will increment vertex rank-
ings πΓ in Γ (p0)’s highest tuple by one to output ⟨4, 7, l,_, q⟩. The canonical
6 shift increments tuple π rankings by the number of vertices added by ⋊⋉, i.e., vertex

difference between p′.g (generic parent topology) and its specialization p′′.g.
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encoding resulting of the join operation is Γ (p2.g) = {⟨0, 1, q,_, l⟩, ⟨1, 2, l,_, q⟩,
⟨2, 3, q, is-a, q′, ⟨1, 4, l,_, l⟩, ⟨4, 5, l,_, c⟨, 5, 1, c,_, l⟩, ⟨4, 6, l,_, q⟩, ⟨4, 7, l,_, q⟩}.

It can be shown that a large part of such join operations result in canonical
encodings. The result of p ⋊⋉ p′ will be canonical, unless (a) the last tuple in
Γ (p.g) is smaller than any of those in Γ (p′′.g), or (b) there is no canonical Γ (p.g)
admissible for a join operation producing the canonical member within [p⋊⋉]Γ
(extremely rare yet can happen). Case (a) is avoided by respecting label ranking
constraints proposed in Sec. 3 but is not sufficient. Additionally, let X = πΓ (v)
with v ∈ ν(p′.g) correspond to the highest DFS-specialization tuple in p′: if the
highest DFS-tuple in Γ (p.g) stems from a vertex with πΓ (v

′) ≥ X, v′ ∈ ν(p.g),
then Γ (p.g) ⋊⋉ Γ (p′.g) will not be canonical. Note that if πΓ (v

′) ≥ πΓ (v) then it is
also true that for any p′ (immediate) descendant DFS-specialization (monotony).
By preventing ⋊⋉ operations in such cases and stopping the exploration of the p′’s
descendant DFS-specializations, we can efficiently prune non-canonical Γ (g).

Case (b) is trickier: To perform a join, it is necessary that Γ (p.g) covers
an induced sub-graph of Γ (p⋊⋉) with an order preserving πΓ vertex mapping
(using ⊣∼=, intuitively similar to a prefix). This relates to the shift function:
That mapping guarantees that the highest ranking DFS-tuple corresponds to
the topology extension ⟨v = ν(p⋊⋉.g)−ν(p.g), e = ϵ(p⋊⋉.g)− ϵ(p.g)⟩. Fortunately,
there always exists a member within [p]Γ which satisfies the induced sub-graph
constraint yet, in some extremely rare cases it is not the canonical one. Recall
that for Γ (p⋊⋉.g) to be canonical, all its prefixes must also be. This is a known
issue with join-based FGPM methods where non-canonical encodings have to be
discovered, maintained and used in join operations to guarantee completeness [4].
It is not a suitable approach since this adds both storage and runtime overhead.

Fig. 3: Advanced examples of DFS-specializations with joins.

Instead of maintaining non-canonical encodings, we identify the case: Some
patterns that represent generic topologies in Lp share a p ⊑ p′ relationship
yet their canonical Γ (p.g) ⊥ Γ (p′.g). This happens when p.g represents a sym-
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metric graph: In many cases, any →
ρ ()-extension yields a non-canonical encod-

ing (Prop. 1). To avoid them, one must exploit not only the ≺dfs relationship
when performing DFS-specialization joins but also the ⊑ one from Lp. In other
words, join operations must be performed with the frequent/canonical DFS-
specializations of all immediate parents in Lp. As an illustration, consider the
join of p4 and p6 in Fig. 3: It yields a non-canonical encoding for p5. The canon-
ical member of [p5]Γ , drawn just below p5, can be produced by joining another
encoding in [p4]Γ (below p4) and p7 rather than p4 and p6. Yet, Γ (p4) the alter-
native encoding for p4 is not a canonical one. Here, Γ (p4) (non-canonical member
of [p4]Γ , hence corresponding to p4 in Lp) will be derived at runtime (from the
difference p4 − p0) prior to computing DFS-specializations for p4.

In summary, our jCan method exploits join operations in two settings: a
guaranteed canonicity one corresponding to an overwhelmingly large majority
of scenarios, and extremely rare cases when canonicity tests remain necessary.

4 Evaluation

Experimental setup. All our codes were developed, compiled and executed
(single-threaded) with Java 11 (HotSpot 64-Bit). Experiments were run on Win-
dows 10 Professional x64 with an Intel i9-9900K processor and 64 GB of RAM.
Rather than measuring CPU time or memory, we opt for tracking the number
of candidate patterns (including potential duplicates), candidate encodings and
frequent (unique) patterns. We look at each method’s candidates-to-patterns
gap as well as candidate patterns (or candidates) and candidate encodings (or
encodings). In short, candidates inform on pruning capacities of the method in
Lp while encodings can reveal an over-reliance on expensive canonicity tests.

For our evaluation we use a triplestore with milk control data from dairy
production. Overall, it logs 10+ years of Canadian dairy production, inclusive
data about 1.6M cows, 6.6k herds and around 20M quality tests. Here we use a
small sample of the dairy dataset and a limited subset of the hierarchy as abstract
items. We designed three different scenarios where we vary the minimum support
threshold ς and the hierarchy H size. Basically, those two constitute the most
impactful parameters: the number of graphs in the database is a less decisive
factor than average graph size (already large enough at 2K+ vertices).

|g ∈ D| µ(ν(g)) ς kmax |F| |H| |T|
125 477.4 25 9 561,352 189 65
125 477.4 10 9 1,584,974 506 213
125 477.4 5 9 2,656,650 636 256

Table 1: Information about sample datasets, settings and frequent patterns |F |.

Comparison of jCan, gSpan and Taxogram. On the top of Fig. 4, for
each of the three scenarios, the numbers of frequent, candidates and encodings
per method are drawn (horizontal bars). On the bottom, a detailed view on the
numbers of candidates per method is provided, further split by depth in Lp.
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Fig. 4: Comparison between jCan, Taxogram, gSpan and an improved gSpan.

jCan bests the other three methods on both ratios. Overall, on a number of
tests it scores around 30% lower than the improved gSpan and around half than
gSpan. Also, its number of encodings is way lower than both gSpan (by a factor
of 4-5) and its improved version (by a factor of 2-3). This seems to imply that
our DFS-specialization scheme can substantially reduce the canonicity tests.

As a general trend, Taxogram underperforms: Since not [ ]Γ -aware, it tests ev-
ery generated encoding against the database. Clearly, its ratio candidates/frequents
is the worse among the four. Curiously enough, it spends most of its computing
effort on a small number of generic topologies whose subspaces seemingly prove
hard to traverse. While not directly visible on our figures, topologies with ex-
tremely large [ ]∼=-classes have also extremely large [ ]Γ -classes. Intriguingly, on
both lower ς scenarios, gSpan produces even more encodings than Taxogram yet
it manages to prune them to a lower rate.

Both gSpan and our improved gSpan see their performance decrease when
lowering ς. Indeed, while both ratios remain comparable along three settings,
they get closer to Taxogram and less competitive with jCan. To the best of our
knowledge, this is explained by Taxogram’s explicit use of H for frequency-based
pruning and gSpan’s lack thereof.

About candidate distributions by depths per method, previously observed rel-
ative efficiency holds. Unsurprisingly, most candidates are located at maximum
depth in Lp. In practice, for candidates it is a crucial point since their frequency
is to be assessed – through sub-graph isomorphism or extending graph embed-
dings – with exponential costs depending on k. Yet there is a clear gap between
jCan/gSpan and the other two. Mainly, it comes from using more advanced can-
didate pruning techniques. More generally, that candidate distribution clearly
indicates that each additional Lp level to be considered for mining adds an ex-



12 T. Martin et al.

ponential overhead. Moreover, candidate-level pruning techniques, while critical,
are not sufficient in practice. Indeed, roughly 50% of improved gSpan/jCan can-
didates turn out to be frequent which is a rather satisfactory result. But one
of two encodings produced by (improved) gSpan turns out to be non-canonical
thus wasting precious resources. Conversely, jCan drastically reduces its number
of encodings and thus achieves a smother and more efficient traversal of Lp.

5 Conclusion

We presented a FGGPM method splitting the task into topology and label-
processing steps whose weak spot is duplicate generation. As a remedy, we
adapted the widely-used DFS canonical encoding from gSpan to graph edges
reflecting is-a hops and designed a n operation that combines edge-wise exten-
sions with pattern joins while taking into account node orbits. As a result, our
method jCan achieves non redundant pattern space traversal which ensures high
efficiency. Yet, the D&C modus operandi of the original approach is lost.

Next, we’ll examine novel canonical encodings based on orbit-aware (partial)
vertex orderings such as those yielded by well-known graph invariants [13].

References
1. Aggarwal, C., et al.: Frequent Pattern Mining. Springer, 2014 edn. (Aug 2014)
2. Borgelt, C.: Canonical Forms for Frequent Graph Mining, p. 337–349. Studies in

Classification, Data Analysis, and Knowledge Organization, Springer (2007)
3. Cakmak, A., Ozsoyoglu, G.: Taxonomy-superimposed graph mining. In: Proc. of

the 11th intl. conf. on EDBT. pp. 217–228. ACM (2008)
4. Huan, J., et al.: Efficient mining of frequent subgraphs in the presence of isomor-

phism. In: Third IEEE international conference on data mining. IEEE (2003)
5. Inokuchi, A.: Mining generalized substructures from a set of labeled graphs. In:

Fourth IEEE ICDM. p. 415–418. IEEE (2004)
6. Inokuchi, A., et al.: An apriori-based algorithm for mining frequent substructures

from graph data. In: PKDD. pp. 13–23. Springer (2000)
7. Kuramochi, M., Karypis, G.: Frequent subgraph discovery. In: IEEE ICDM (2001)
8. Martin, T., et al.: Towards Mining Generalized Patterns From RDF Data And A

Domain Ontology. In: Proceedings of GEM@ECML-PKDD2021. Springer (2021)
9. Nijssen, S., Kok, J.: Frequent graph mining and its application to molecular

databases. IEEE Trans. on Syst., Man and Cybernetics 5, 4571–4577 (2004)
10. Petermann, A., et al.: Mining and ranking of generalized multi-dimensional fre-

quent subgraphs. In: IEEE ICDIM. pp. 236–245. IEEE, Fukuoka (2017)
11. Srikant, R., Agrawal, R.: Mining generalized association rules. Future Generation

Computer Systems 13(2–3), 161–180 (1997)
12. Vanetik, N., et al.: Computing frequent graph patterns from semistructured data.

In: IEEE ICDM. pp. 458–465 (2002)
13. Weisfeiler, B., Leman, A.: The reduction of a graph to canonical form and the

algebra which appears therein. NTI, Series 2(9), 12–16 (1968)
14. Yan, X., Han, J.: gSpan: Graph-based substructure pattern mining. In: IEEE

ICDM. pp. 721–724 (2002)
15. Zhang, X., et al.: Mining link patterns in linked data. In: WAIM. pp. 83–94.

Springer (2012)


