
3D Detection of ALMA Sources through Deep
Learning

Michele Delli Veneri1,2[0000−0002−8178−2942], Lukasz
Tychoniec3[0000−0002−9470−2358], Fabrizia Guglielmetti3[0000−0003−1201−2466],
Eric Villard3[0000−0003−4314−4947], and Giuseppe Longo4[0000−0002−9182−8414]

1 INFN Section of Naples, Napoli, via Cintia, 1, Italy, 80126
2 Department of Electrical Engineering and Information Technology, University of

Naples ”Federico II”, Via Claudio, 21, 80125 Naples NA, Italy
3 ESO, Karl-Schwarzschild-Straße 2, 85748 Garching bei München

4 Department of Physics ”Ettore Pancini”, University of Naples ”Federico II”, Via
Cintia, 1, Italy, 80126

Abstract. We present a Deep Learning pipeline for the detection of
astronomical sources within radiointerferometric simulated data cubes.
Our pipeline is constituted by two Deep Learning models: a Convolu-
tional Autoencoder for the detection of sources within the spatial domain
of the cube, and a ResNet for the denoising and detection of emission
peaks in the frequency domain. The combination of spatial and frequency
information allows for higher completeness and helps to remove false pos-
itives. The pipeline has been tested on simulated ALMA observations
achieving better performances and faster execution times with respect
to traditional methods. The pipeline can detect 92% of sources with no
false positives thus providing a reliable source detection solution for fu-
ture astronomical radio surveys.
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1 Introduction

In the last two decades, astronomical datasets underwent a rapid growth in size
and complexity thus driving Astronomy in the big data regime [15, 3, 21, 29]
and preventing, in most cases, the use of traditional interactive data reduction
and analysis. Machine learning has therefore been extensively exploited by the
community to solve a wide spectrum of problems spanning all aspects of the
astronomical data cycle, from instrument monitoring to data acquisition and
ingestion, to data analysis and interpretation [4, 17, 25, 14, 10, 7, 28, 1, 11, 19].
Particularly challenging are the problems posed by existent and future infras-
tructures for radio astronomy, such as the Atacama Large subMillimeter Array
(ALMA), the Low Frequency Array (LOFAR) and the Square Kilometer Array
(SKA) which are pushing astronomy in the exabyte and exascale computing. Af-
ter the initial correlation and calibration of the raw signals in the Fourier space,
these instruments provide data in the form of data cubes where two dimensions
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are spatial (coordinates on the celestial sphere) and one is the frequency. In a
very rough oversimplification, the extraction of the useful information from these
data cubes requires the solution of a conceptually simple inverse problem which
can be expressed in the form:

y = Ax+ n (1)

where y are the observations, x is the unknown signal, A is a degradation oper-
ator and n is the observational noise. A, which sometimes is also called forward
operator, takes up a very complex underlying physical process and, when applied
to the signal x, outputs the noiseless observation y. Many attempts have been
made at solving this problem using Machine Learning (ML) based approaches[5,
30, 24, 22, 9].

In this paper, we present a deep-learning-based pipeline for the detection
of sources within “uncleaned” data cubes, i.e. data which have not undergone
any prior deconvolution (hereafter “dirty” datacubes). This choice was dictated
by several shortcomings of the traditional cleaning approach , based on the
tCLEAN algorithm [13], which works by iteratively performing deconvolutions
of the individual frequency slices of the cube by assuming a parametric model
for the source brightness distributions. Its main shortcomings are:

1. the iterative cleaning procedure works on an image basis assuming that each
image (or slice) in the cube is independent from the others. Hence, each
cube undergoes a time-consuming cleaning procedure which is unfeasible for
current and future radio interferometers [6].

2. by working on each slice independently, tCLEAN completely ignores possible
correlations between pixels along the frequency axis of the cube, and this
leads to the introduction of biases and artifacts in the cleaned cube. For
example, a noise peak would be deconvolved several time with the PSF of
the instrument and then the recovered delta function would be convolved
with the clean beam thus producing a structure morphologically similar to
actual sources that underwent the same iterative deconvolution process.

The main novelty of our proposed pipeline with respect to other architectures
[26, 16, 9, 24, 22] is to include frequency information (which is usually discarded)
to help detect the sources and remove false detections. As we shall demonstrate,
frequency information can help both in deblending spatially blended (overlap-
ping) sources and in the detection of faint sources.

Our paper is structured as it follows: In Section 2 we describe the archi-
tectures of the deep learning models used in our pipeline, the complete data
flow within the pipeline in order to explain its inner workings, and the training
strategies for all the models. In Section 3 we present the simulation algorithm
used to generate the realistic ALMA observations needed to train and test our
pipeline, and we analyse the pipeline performances in detecting sources within
the test set. A comparison is also made with the performances of blobcat : a clas-
sical source detection algorithm widely used within the community [12]. Finally,
in Section 4 we draw our concluding remarks, and lay the prospect for future
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work. We wish to emphasize that while this paper focuses mainly on the analysis
of ALMA data cubes, the methodology is general and can easily be exported to
the processing of similar data (e.g. LOFAR and SKA) as well as to other fields
(such as radiology) requiring an accurate analysis of data cubes.

2 Methodologies

The pipeline we present in this work can be described as a decision graph inter-
connecting two deep learning models, each one taking a specialised role in the
detection process. The architectures were chosen on the basis of their strengths:
a convolutional architecture (we shall call it “Blobs Finder”) to process spatial
information and a Recurrent Neural Network (Deep GRU) to process frequency
information. Before describing the flow of data within the pipeline, we hereby
shortly describe the DL models.

2.1 The Blobs Finder

Blobs Finder is a 2D Deep Convolutional Autoencoder trained to solve the image
deconvolution problem:

D[x, y] = P [x, y]×M [x, y] +N [x, y] (2)

where D[x, y] is the dirty (stacked) image produced integrating along the fre-
quency the dirty cube, P [x, y] is the dirty PSF and N [x, y] is the combination of
all noise patterns in the data. Blobs Finder is trained with the dirty images as
inputs, and the sky model images as targets. Both input and target images are
normalized to the [0, 1] range, which helps with the training process and allows
to make a probabilistic interpretation of the autoencoder output. Standard data
augmentation techniques are used to improve the model generalization capabili-
ties. The Blobs Finder architecture is constituted by an Encoder Network and a
Decoder Network. The Encoder consists of four convolutional blocks and a final
fully connected layer. Each block contains a 2D Convolution layer with stride 2
and a kernel size of 3, a Leaky ReLU (Rectified Linear Unit) activation function
and a 2D Batch Normalization layer. Each block halves the spatial extent of its
input and doubles the number of channels. The Decoder is constituted by a fully
connected layer, followed by four deconvolutional blocks and a final layer. Each
deconvolutional block contains a bilinear interpolation function with a stride of
2 which up-samples spatially the input, a 2D Transposed Convolution with a
kernel size of 3 and a stride of 1 which reduces the number of channels while
preserving the spatial dimensions, a leaky ReLU activation function and a 2D
Batch Normalization layer. The final layer (used to normalize the input to the
[0, 1] range) is a 2D Convolution with a kernel size of 1 and a stride of 1 followed
by a Sigmoid activation function. To train Blobs Finder, we use as a loss function
the weighted combination of two well-known losses in the DL image reconstruc-
tion and denoising framework: the l1 loss and the Structural dissimilarity loss
DSSIM which is based on Structural Similarity Index measurement.
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2.2 The Deep GRU

Deep Gated Recurrent Unit (GRU) is a Recurrent Neural Network (RNN) [23]
constructed by combining together two layers of GRUs and a fully connected
layer. GRU [8] tries to solve the main shortcoming of RNNs, a type of neural
network designed to capture correlation in sequences of data (usually 1D sig-
nals), which is the exploding or vanishing of gradients, by introducing gating
of its hidden states. Gating is introduced through the reset and update gates
which, respectively, control how much of the previous hidden state must be re-
membered and the degree at which the current hidden state is similar to the
previous one at each frequency iteration. The first helps to capture short-scale
correlations in the data, while the second captures the long-scale correlations. In
our implementation, each layer of GRUs outputs 32 hidden states (or channels
to keep the nomenclature homogeneous) which are then concatenated to form a
latent vector of size [b, 64× 128] before being fed to a fully connected layer. The
layer transforms its input in a vector with the same size as the input signal and
then a Sigmoid activation function is applied to normalize it to the [0, 1] range.
As loss function, we use the l1 loss.

2.3 The Pipeline

The pipeline can be divided into tree logical blocks: 2D source detection, fre-
quency denoising and emission detection, and source focusing (these blocks are
marked in Fig. 1). To ease the logical flow of the pipeline, we assume that all DL
models have been trained to act as simple, functional map between their inputs
and outputs.

1. 2D Sources Detection (1 - 4). The image cube is normalized to the [0, 1]
range and then it is integrated along frequency (1) to create a 2D image. We
refer to this image as the “dirty image”. The dirty image is then cropped
to a size of [256, 256] pixels (which is large enough to contain the whole
source and removes the edge of the images which are characterized by low
SNR), normalized to the [0, 1] range (2) and then fed to the first DL model
Blobs Finder. The autoencoder processes the image and predicts a 2D
probabilistic map (normalized to the [0, 1] range) of source detection (3). A
hard thresholding value of 0.1 is used to binarize the probabilistic map and
then the scikit-learn [20] label and regionprops algorithms are used to extract
bounding boxes around all blobs of pixels (4). The thresholding value is
chosen to be 0.1 in order to peak all the signal detected by Blobs Finder, while
excluding small fluctuation in the background. We refer to these blobs as
source candidates. Figure 2 show, respectively, an example of an input dirty
image containing 6 simulated sources (outlined by green bounding boxes
and of which two are spatially blended), the target sky model image (with
in green the target bounding boxes and in red the predicted bounding boxes
extracted through thresholding of the predicted 2D probabilistic map), and
the 2D prediction map with in red the predicted bounding boxes.
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Fig. 1: The full pipeline schema, the numbers show the logic flow of the data
within the pipeline (see the text for explanations).

Fig. 2: Left: Input dirty image; center: Target Sky Model Image; right: Blobs
Finder Prediction Image (green = true bounding boxes, red = predicted).
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2. Frequency Denoising (5 - 7): bounding boxes around source candidates
(blobs) are used to extract dirty spectra from the input cube. For each source
candidate, its spectrum is extracted by adding, for each of the 128 frequency
slices of the cube, the pixels inside its bounding box. The spectra are stan-
dardized, i.e. rescaled to have 0 mean and standard deviation = 1, and
then fed to Deep GRU. Then the Deep Gated Recurrent Unit denoises the
standardized spectra and outputs 1D probabilistic maps of source emission
lines (hereafter, cleaned spectra (6)). In order to detect emission peaks, the
cleaned spectra are then analysed with the scipy [27] find peaks algorithm
(threshold value of 0.1). Each peak is then fitted with a Gaussian [2]. As
fitting algorithm, we employ the LevMarLSQFitter algorithm, and as initial
guesses for the mean and amplitude of the Gaussian model, respectively, the
previously detected peak position and its amplitude. All detected peaks are
then recorded alongside their FWHMs (7). At this stage, to account for pos-
sible false positives produced by Blobs Finder, all potential candidates that
show no meaningful peak in their spectra are removed. If more than one peak
is found inside a given spectrum, the candidate likely is the superimposition
of two or more blended sources and thus is flagged for deblending.

3. Source Spectral Focusing (8 - 9): this phase has two main objectives;
deblend sources and remove false positives. The first is tackled via spectral
focusing aimed at increasing the Signal to Noise Ratio (SNR) of the source
(by cropping a [64, 64] pixel box around its bounding box and integrating
only within the peak FWHM, see Fig. 3). In order to measure sources SNRs,
we introduce two diverse SNR metrics defined as follows:
– Global SNR:

SNR =
median(xs(r))

var(xn(R− r))
(3)

where xs(r) are the values of the source pixels contained within the
circumference of radius r that inscribes the source bounding box, and
xn(R− r) are the pixel values within an annulus of internal radius r and
external radius R which has the same area of the inscribed circumference;

– Pixel SNR:
snr =

xi

var(X)
(4)

where xi is the value of the given pixel, and var(X) is the variance
computed on the full image.

These two SNR estimators are used respectively to disentangle false positives
from true sources and to deblend possible multiple sources within a given
blob.
First, the source is focused on the highest flux peak (primary peak) and the
global SNR calculation is made to understand if the potential source must
be discarded. Also, the pixel SNR measurement is used to find the highest
SNR pixel in the image, which will act as a reference for the next phase
of the deblending process. The candidate source is then focused around the
secondary peaks. If the secondary peaks are outside the emission range of
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Fig. 3: An example of source focusing of a potential source

the brightest source, then the latter should disappear from the focused image
(because the image is produced by integrating the cube outside the source
emission range), and the pixel SNR measurement is used to find the highest
SNR pixel in the image. If this pixel is different from the previously found
reference pixel, then the neighboring pixels around this pixel are linked with
a friend of friends algorithm in an iterative manner. At each iteration, the
Global SNR is measured. Pixels are added in this fashion until a plateau in
the global SNR is reached. If the highest SNR pixel and the reference pixel
are within 1 pixel and the global SNR measured in the integrated cube image
is higher than the measured SNR in the spectrally focussed image, then the
source is discarded as a False Positive. A bounding box is finally created
in order to encompass all the selected pixels, and a [64, 64] pixel image is
cropped around the bounding box.

3 Experiments

To train and test the proposed pipeline, we need a statistically significant sam-
ple of ALMA model and dirty cube pairs. To this effect we generated our own
realistic simulations of ALMA data cubes by combining python and bash script-
ing with the Common Astronomy Software Application (CASA) v. 6.5.0.15 [18]
python libraries. Each model cube was created by first generating a central
source and then by adding between 2 and 5 additional sources such that each
source emission flux is lower or equal to that of the central source. In order to
simulate 3D sources, we combined 2D Gaussian Components in the spatial plane
with 1D Gaussian components (emission lines) in frequency space. The source
morphological parameters are sampled from the intervals reported in Table 1.

We then feed the sky models to the CASA simobserve taks which simulates
interferometric measurements sets through a series of observing parameters. We
use the ALMA Cycle 9 configuration C-3 for the antenna configuration, simu-
lating 43 antennas in the 12-m Array with a maximum baseline of 0.50 km (for
trchnical details see [18]). The dirty data cubes are then obtained by perform-
ing the fast Fourier transform of the visibility data and gridding. We generate
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Table 1: Sampling intervals of the model source parameters. Sources are gener-
ated by randomly sampling from the outlined uniform distributions. The first
column shows the parameter name, the second the range from which the param-
eter values are sampled, and the third the unit.

Parameter Name Range Unit

Number of components [2 – 5] –
Amplitude of 2D Gaussian compoment [1 – 5] arbitrary
FWHM of the 2D Gaussian component [2 – 8] pixel
Spectral index [-2 – 2] –
Position in the xy plane [100 – 250] pixel
Position angle [0 – 90] deg
Line amplitude [1 – 5] arbitrary
Line center [10 – 110] chan
Line FWHM [3 – 10] chan

5, 000 simulated cube pairs containing a total of 22, 532 simulated sources and
divide them into train, validation, and test sets (60%, 20%, 20%). The three sets
contain respectively 13, 512, 4, 465, and 4, 556 simulated sources. While the two
models are trained indipendently in parallel on the same training data, the pre-
dictions are made sequentially given that the input of each model is the output
of the previous one.

3.1 Source Detection

Hereafter, we present the performances of Blobs Finder and Deep GRU in de-
tecting sources within the 1, 000 cubes in the Test set. To check if a source has
been detected by Blobs Finder, we measure the 2D Intersection over Union (2D
IoU) between the true 2D bounding box and the predicted one, while for Deep
GRU we measure the 1D IoU between the true emission ranges and the detected
ones. In both cases, we use a threshold of 0.8. To ensure that the central part
of the source emission of a True Positive (TP) is always detected, we require
the distance between the centres of the true and predicted bounding boxes is
smaller then 3 pixels. Blobs Finder predicts 4056 (89%) sources (TP). Matching
them with the true 4, 556 sources in the Test set, 4, 205 (92.3%) pass the 2D IoU
criterion, meaning that an additional 149 sources are detected by Blobs Finder
but are spatially blended with another source. Blobs Finder misses 354 sources
(FN) and detects no False Positives (FP). The 4056 bounding boxes are used
to extract a corresponding number of dirty spectra from the dirty cubes. The
Deep GRU detects 4, 202 emission peaks out of the 4, 205 present in the ex-
tracted spectra but also produces 62 false positives. Sources are then ”spectrally
focused” within the predicted frequency emission ranges and SNR checks are
made to detect false positives and, in the case, deblend multiple sources. At the
end of this phase all 62 false positives are correctly identified and eliminated.

In order to compare with the traditionally used algorithm blobcat, we run
it on the 1000 dirty images in the test set. Blobcat requires two parameters: a
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detection (Td) and cut (Tf ) SNR threshold to decide which peaks in the image
are candidates for blobs and where to cut the blobs boundaries around them (in
other words: pixels with a SNR higher than Tf are selected to form islands and
island boundaries are defined by Td). To make the fairest comparison possible,
we measured blobcat performances with different choices of Td and Tf through a
grid-search strategy (Td ∈ [2, 15], Tf ∈ [1, 10]) and, in this paper, we report the
best results (Td = 8σ, Tf = 4σ). The same criterions used for Blobs Finder were
then used to measure the performances. blobcat successfully detects 2, 779 (61%)
sources, produces 2, 429 false detections and misses 1777 sources. The majority of
sources missed by blobcat are spatially blended with brighter sources, or present
a SNR <= 5.0, or are located at the edges of the images. Table 2 summarises
the source detection performances. Regarding the time of execution, our pipeline
can process an ALMA cube, on average, in 3.2 milliseconds , while blobcat takes
on average 32 seconds. This is a crucial factor for ALMA (which is transitioning
to a TB data regime [6]) and for other future radiointerferometers such as SKA.

Algorithm TP / FP FN Precision Recall Mean IoU

Pipeline 4202 (92.3%) 0 354 (7.7%) 1.0 0.923 0.84
blobcat 2779 (61%) 2429 1777 (39%) 0.53 0.609 0.71

Table 2: Comparison between the sequential proposed source finding pipeline
composed by Blobs Finder, DeepGRU and Spectral Focusing, and blobscat.
Columns show true positives (TP), false positives (FP), false negatives (FN),
precision, recall and mean intersection over union (Mean IoU) between true
bounding boxes and predicted ones. TP and FN are also expressed as fractions
over the total number of sources.

4 Conclusions

In this paper, we present a novel pipeline for source detection in radiointerfero-
metric data cubes. The pipeline is constituted by two DL models: Blobs Finder
(Deep Convolutional Autoencoder) and Deep GRU (RNN). Blobs Finder detect
sources within the integrated data cubes (2D images produced by integrating
the cubes along the frequency axis) and the found candidate sources are used
to extract spectra which are then fed to the Deep GRU. Deep GRU takes care
of denoising the spectra in order to detect emission lines. Spatial and Spectral
information is then combined to remove false positives and spatially deblend
sources. To test the pipeline capabilities, we produce our own realistic simu-
lations of ALMA observations, 5, 000 data cubes containing 22, 532 simulated
sources. We also compare the pipeline performances with blobcat, a standard
source finding algorithm extensively used within the community, showing that
our proposed pipeline achieves better performances and faster execution times.
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