
Bitpaths: compressing datasets without
decreasing predictive performance

Loren Nuyts1[0000−0002−4479−3781], Laurens Devos1[0000−0002−1549−749X],
Wannes Meert1[0000−0001−9560−3872], and Jesse Davis1[0000−0002−3748−9263]

Department of Computer Science, KU Leuven, Celestijnenlaan 200A, Leuven,
Belgium

firstname.lastname@kuleuven.be

Abstract. The ever growing amount of data becomes available neces-
sitates more memory to store it. Machine learned models are becoming
increasingly sophisticated and efficient in order to navigate this grow-
ing amount of data. However, not all data is relevant for a certain ma-
chine learning task and storing that irrelevant data is a waste of memory
and power. To address this, we propose bitpaths: a novel pattern-based
method to compress datasets using a random forest. During inference, a
KNN classifier then uses the encoded training examples to make a pre-
diction for the encoded test example. We empirically compare bitpaths’
predictive performance with the uncompressed setting. Our method can
achieve compression ratios up to 80 for datasets with a large number of
features without affecting the predictive performance.

Keywords: feature-encoding · tree-embedding · dataset-compression

1 Introduction

The ever increasing sizes of data poses challenges. On the one hand, more stor-
age is needed. On the other hand, machine learning (ML) approaches runtime
scales with size and dimensionality of the data. From a ML perspective, ide-
ally the data could be compressed in a way that still enables good predictive
performance [17]. A variety of techniques have been proposed for this task such
as product quantization-based approach [11], using a neural network [15], or
the pattern-mining based KRIMP [18,12]. A drawback to product quantization
is that it is only applicable to real-valued data whereas KRIMP is based on
itemsets and hence is only applicable to discrete data.

This paper proposes a pattern-mining-based compression scheme using ran-
dom forests. Random forests are a popular and powerful method that construct
an ensemble of decision trees learned on random subsets of the data. The value
predicted for an input example is determined by its output configuration [4] –
the ordered set of leaves that are activated by the example in each tree – and
is obtained by combining the predictions of the individual leaves using e.g. a
voting scheme. A decision tree effectively compresses the data by (1) identifying



2 L. Nuyts et al.

relevant patterns by automatically selecting predictive features, and (2) group-
ing together examples that are similar, ignoring differences that are irrelevant
to the task at hand. As the number of trees in an ensemble is relatively small,
and because each leaf can be represented by a small code (at most d bits, with
d the tree’s depth), the concatenation of the leaf codes in an example’s output
configuration is an effective compressed representation of the example. A tree-
based scheme has the added benefit that it can naturally cope with data that
contains both discrete and real-valued features.

Based on these insights, we developed bitpaths, a method that trains a random
forest on the original feature space F . The random forest maps each example
from the original feature space F to the encoded output configuration space
B. During inference, the encoded output configuration of the test example is
computed and a KNN classifier is used on the encoded output configurations of
the training examples to make a prediction for the encoded test example.

The method we developed for compressing the dataset is similar to the
method Pliakos et al., 2016 [16] used for unsupervised learning tasks: Extremely
Random Clustering tree Paths (ERCP). However, they use a different encoding
for the output configurations that is not suitable for compression (section 2).
Indeed, depending on the dimensions of the random forest, ERCP usually ex-
pands the size of the dataset. Bitpaths uses a more memory-efficient encoding
while maintaining the same predictive accuracy for supervised learning tasks.

This paper investigates the following 2 key questions to determine whether
our proposed method is suitable for compression.

1. How well in terms of accuracy does bitpaths perform when compared to
KNN on the original feature space F , RF on the original feature space F
and the related method ERCP [16] (Q1)?

2. How much compression of the training set can be achieved by transforming
the original feature space F to the binary code space B using bitpaths
without decreasing predictive performance (Q2)?

2 Preliminaries

Random Forest. A random forest, first proposed by Breiman, 2001 [1], is a
randomized decision tree ensemble that is widely used for both classification
[2,8] and regression tasks [13,9]. A decision tree ensemble consists of several,
independently constructed decision trees. By combining the predictions of all
individual trees, the ensemble can overcome the large variance that individual
decisions trees usually have [16]. A random forest is such a decision tree ensemble,
but it consists of randomized decision trees, which means that each decision tree
can only split on a randomly chosen subset of the features.
Output configuration. Given a random forest with m trees, the output config-
uration (OC) [4] of an example x is the ordered set of leaf nodes (l1, .., ln) where
each leaf node li of the output configuration contains x. The output configuration
corresponds to a combination of root-to-leaf paths and the corresponding leaf
nodes, where there is one such path and leaf node for each tree in the ensemble.



Compression without decreasing predictive performance 3

The output configuration of an example x completely determines the prediction
of the random forest for x.
Extremely Random Clustering tree Paths (ERCP) Pliakos et al., 2016
[16] developed a similar method: Extremely Random Clustering tree Paths (ERCP).
They use an ensemble of extremely randomized trees instead of a random forest
with randomized trees. The most important difference however is the encoding
of the output configurations. Instead of encoding the root-to-leaf path, they en-
code the presence of an example in each node of the tree. Given a tree T with
nodes n1, .., nk, an example x ∈ F is encoded as a binary string b1..bk, where
bi = 1 if x ∈ ni and 0 otherwise. This results in a very sparse encoding of the
example.

3 Bitpaths

The goal of bitpaths is to transform the original feature space F to the encoded
output configuration space B without losing the essential predictive information.
The essential predictive information is extracted by training a random forest on
the training set using the original feature space F . By encoding the root-to-leaf
paths of each example, the information that the random forest uses to make
predictions is kept, while the other information is discarded (section 3.1).

Inference in the encoded output configuration space B is done with a KNN
classifier, which has excellent performance as long as the number of irrelevant
features is small. Since our compression scheme removes irrelevant information,
KNN is an excellent match.

3.1 Feature construction

First, a random forest of m trees with maximal depth d is trained on the training
set using the original feature space F . Second, the path of each training example
in each tree is encoded in a binary string. At each node of a tree, the example
can take the left branch, in which case a 0 bit is added to the binary code, or
the right branch, in which case a 1 bit is added. This results in a binary code
of d bits. Figure 1 shows a toy example of a random forest with 3 trees and
maximal depth 2. Each leaf node additionally contains the binary code that
represents the path from the root to the leaf node. Finally, the encoded OC for
the training example is obtained by concatenating the binary codes of each tree
in the random forest. In the toy example of figure 1, the training example with
f1 = f2 = f3 = f4 = 1 is represented by the encoded OC 01 10 01 and the
training example with f1 = f2 = f3 = f4 = 5 is represented by 10 01 00.

3.2 Inference

At inference time, a k-nearest neighbours model predicts the target variable of
an encoded test example, based on the encoded OC’s of the training examples.
The k-nearest neighbours are determined by the Hamming distance between the



4 L. Nuyts et al.

Fig. 1. Example random forest with 3 trees and maximal depth 2. The leaf nodes
contain the label and the binary code that represents the root-to-leaf path.

Fig. 2. Lines of equal memory usage in function of the number of trees in the ensemble,
the maximal depth of each tree and the number of features in the original feature space.

encoded training examples and the encoded test example. The prediction of the
test example is then the average of the predictions of the k-nearest neighbours.

3.3 Compression

For a random forest of m trees and maximal depth d, bitpaths represents each
example by an encoded OC of m ∗ d bits. If we assume that each feature in the
original feature space F is represented by a 4 byte float and that there are k
features, an example in F consists of 8 ∗ 4 ∗ k = 32 ∗ k bits. Figure 2 shows
the lines of equal memory usage in terms of the number of features in F , the
number of trees in the random forest and the maximal depth of each tree. If
the number of trees and maximal depth is chosen such that you fall below the
corresponding depth line, compression is achieved.

The encoding of the related method ERCP on the other hand is not suitable
for compression. ERCP represents each example by a binary string of (2d+1 −
1) ∗ m bits. This quickly explodes with increasing depth and number of trees
and compression would only be possible for datasets with an enormous number
of features.

4 Experimental Evaluation

In this section, the following research questions will be answered.



Compression without decreasing predictive performance 5

Table 1. Characteristics of the datasets used for evaluation

Nb of instances Nb of features

BreastCancer 699 9
Covertype 581 012 54
Higgs 3 468 33
Gina agnostic 601 970
monks-problem-2 250 000 6
ijcnn1 141 691 22
Webspam 350 000 254
tic-tac-toe 958 9
Scene 2 407 299
Fashion MNIST 14 000 784

1. How does bitpaths compare to KNN on the original feature space F , RF on
the original feature space F , and the related method ERCP [16] in terms of
predictive performance (Q1)?

2. How much compression of the training set can be achieved by transforming
the original feature space F to the binary code space B using bitpaths
without decreasing the predictive performance (Q2)?

We used 10 datasets1 that vary in the number of instances and features (table 1)
for our experiments. Min-max normalization is first applied to all datasets. We
used the implementation of the RandomForestClassifier class of scikit-learn ver-
sion 1.0 with Gini impurity for all random forests used in the experiments. The
exact number of trees and the maximal depth depend on the specific experiment.
For the other parameters, the default setting of the RandomForestClassifier class
is used. The evaluation is done with 10-fold cross-validation.

4.1 Experimental evaluation bitpaths (Q1)

For the first research question, we used a random forest with 50 trees with a
maximal depth of 8 and selected the 10 nearest neighbours during inference.
Table 2 compares bitpaths with KNN evaluated on the original feature space
F , the same random forest as was used for feature construction and ERCP
[16] (see section 2). It also contains the average and the standard deviation of
the rank per method. Although bitpaths has the best average rank and the
lowest standard deviation, both the Friedman test [6,7] and the test developed
by Iman and Davenport [10] imply that all compared methods do not signifi-
cantly differ from each other (α = 0.05). Furthermore, following the approach
proposed by Demsar, 2006 [3] to compare multiple classifiers in a statistically
correct way, the Nemenyi test [14], that performs a pair-wise comparison, and
the Bonferroni-Dunn test [5], that additionally corrects for the family-wise error

1 For the Fashion MNIST dataset, only the examples belonging to class 2 and 4 are
used to make the classifier binary. This will be denoted as Fashion MNIST (2, 4)



6 L. Nuyts et al.

Table 2. Accuracy results for regular k-nearest neighbours (KNN, k = 10), the random
forest used for feature construction in the bitpaths method (RF), the method proposed
by Pliakos et al., 2016 (ERCP) [16] and our proposed method (bitpaths). For each
dataset, the rank of each method is given between brackets. The achieved compression
(not in percent) by ERCP and bitpaths on each dataset is also included, where a higher
compression ratio means that there is more compression and is thus better. The last
column gives the average duration (in seconds) of the compression for bitpaths.

KNN RF ERCP bithpaths
Compression

ERCP
Compression

bitpaths
Compression time

bitpaths (s)

BreastCancer 0.964 (4) 0.969 (1) 0.968 (2) 0.966 (3) 1.13e-2 7.20e-1 1.15e-1
Covertype 0.971 (1) 0.770 (4) 0.905 (3) 0.908 (2) 6.76e-2 4.32 159
Higgs 0.807 (4) 0.826 (1) 0.820 (3) 0.825 (2) 4.13e-2 2.64 11.7
Gina agnostic 0.826 (4) 0.922 (3) 0.937 (1) 0.935 (2) 1.21 77.6 3.55e-1
monks-problem-2 0.809 (4) 0.960 (1) 0.942 (2.5) 0.942 (2.5) 7.51e-3 4.80e-1 1.44e-1
ijcnn1 0.975 (3) 0.964 (4) 0.979 (2) 0.983 (1) 2.76e-2 1.76 8.10
Webspam 0.982 (3) 0.959 (4) 0.984 (1) 0.983 (2) 3.18e-1 20.3 73.4
tic-tac-toe 0.824 (4) 0.926 (2) 0.918 (3) 0.948 (1) 1.13e-2 7.20e-1 1.34e-1
Scene 0.950 (1) 0.908 (4) 0.926 (3) 0.931 (2) 3.74e-1 23.9 2.59e-1
Fashion MNIST (2, 4) 0.870 (3) 0.868 (4) 0.875 (2) 0.881 (1) 9.82e-1 62.7 1.40

average rank 3.05 2.80 2.25 1.90 - - -
standard deviation rank 1.150 1.327 0.750 0.663 - - -

in multiple hypothesis testing, conclude that our proposed method doesn’t sig-
nificantly differ from any of the other methods in terms of accuracy. However,
7 of the 10 datasets are compressed with a compression ratio ranging between
1.76 and 77.6 (not in percent), depending on the dataset. This implies that bit-
paths can compress datasets without affecting the predictive performance. This
stands in contrast with ERCP that uses more memory for 9 of the 10 evaluated
datasets. Furthermore, bitpaths compresses datasets quickly: depending on the
size of the dataset it takes less than a second or up to a few minutes.

4.2 Compression versus accuracy (Q2)

For the second research question, we varied the compression ratio of the bitpaths
algorithm to investigate its effect on the accuracy. The number of trees in each
ensemble are chosen such that a compression ratio of 1, 2, 4, 6, 8, 10, 20, 30, 40,
50, 60, 70 and 80 is achieved. The maximal depth of each tree always remained
8. Figure 3 shows that the datasets can be divided in two categories:

1. For the datasets with a low number of features, the best accuracy is found
when no compression takes place (compression ratio = 1) and the accuracy
gradually decreases with a higher compression ratio. The decrease in ac-
curacy is because the ensembles get smaller and smaller, until eventually
they are unable to accurately capture the relationship between the features
and target variable. For the breastcancer, monks-problem-2 and tic-tac-toe
datasets, a compression ratio beyond 40, 30 and 30 respectively couldn’t be



Compression without decreasing predictive performance 7

Fig. 3. Evolution of the accuracy of bitpaths in terms of the compression ratio (not in
percent) for each example in the training set. We evaluated the following ratios: 1, 2,
4, 6, 8, 10, 20, 30, 40, 50, 60, 70, 80. The number of trees in each ensemble are chosen
to achieve such a compression ratio. The maximal depth always remained 8.

achieved because these datasets are a very low dimensionality (< 10) and
because we look at depth 8 trees, our codes are always one byte.

2. For the datasets with a high number of features, the initial accuracy is low
(except for Webspam) and gradually increases with increasing compression
until it reaches its peak. From that point, the accuracy has a steady course
and doesn’t drop like the datasets with a low number of features. This be-
haviour can be explained by the extremely large number of trees that are
needed when no compression takes place (1000-3000 trees) while this is sub-
stantially fewer for the other datasets (maximum 216 trees with no compres-
sion). The datasets of this category are too small to properly train such a
huge forest, which results in low accuracy results for small compression rates.
Webspam on the other hand is large enough to train its large forest, which
explains its good initial accuracy. The steady course can also be explained
by the number of trees in the ensemble, which for higher compression ratios
is still large enough to make good predictions. It is expected that for even
higer compression ratio’s, the accuracy will also drop.

5 Conclusion

This paper explored how to compress datasets without losing predictive perfor-
mance. Our approach can handle both real-valued and discrete data by using a
random forest to compress the data. The experiments showed that bitpaths can
achieve high compression ratios for datasets with many features without affect-
ing the predictive accuracy. One limitation of our approach is that the encoded
output configuration is suboptimal in terms of compression when working with
non-balanced trees where most examples take the long branches. A different
encoding of the output configurations might be more suitable in that case.



8 L. Nuyts et al.

Acknowledgements

This work was supported by the Research Foundation-Flanders (1SB1320N to
LD), iBOF/21/075, the KU Leuven Research Fund (C14/17/070), and the Flem-
ish Government under the “Onderzoeksprogramma Artificiële Intelligentie (AI)
Vlaanderen” program.

References

1. Breiman, L.: Random forests. Machine Learning 45, 5–32 (10 2001)
2. Cutler, D.R., Edwards Jr., T.C., Beard, K.H., Cutler, A., Hess, K.T., Gibson, J.,

Lawler, J.J.: Random forests for classification in ecology. Ecology 88(11), 2783–
2792 (2007)

3. Demsar, J.: Statistical comparisons of classifiers over multiple data sets. Journal
of Machine Learning Research 7, 1–30 (01 2006)

4. Devos, L., Meert, W., Davis, J.: Adversarial example detection in deployed tree
ensembles (2022)

5. Dunn, O.J.: Multiple comparisons among means. Journal of the American Statis-
tical Association 56(293), 52–64 (1961)

6. Friedman, M.: The use of ranks to avoid the assumption of normality implicit in
the analysis of variance. J. of the Amer Stat Assoc 32(200), 675–701 (1937)

7. Friedman, M.: A Comparison of Alternative Tests of Significance for the Problem
of m Rankings. The Annals of Mathematical Statistics 11(1), 86 – 92 (1940)

8. Gislason, P.O., Benediktsson, J.A., Sveinsson, J.R.: Random forests for land cover
classification. Pattern Recognition Letters 27(4), 294–300 (2006), pattern Recog-
nition in Remote Sensing (PRRS 2004)

9. Gong, H., Sun, Y., Shu, X., Huang, B.: Use of random forests regression for predict-
ing iri of asphalt pavements. Construction and Building Materials 189, 890–897
(2018)

10. Iman, R.L., Davenport, J.M.: Approximations of the critical region of the friedman
statistic. Communications in Statistics p. 571–595 (1980)

11. Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor
search. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(1),
117–128 (2011)

12. Makhalova, T., Kuznetsov, S.O., Napoli, A.: Numerical pattern mining through
compression. pp. 112–121 (2019)

13. Montillo, A., Ling, H.: Age regression from faces using random forests. In: 16th
IEEE International Conference on Image Processing. pp. 2465–2468 (2009)

14. Nemenyi, P.B.: Distribution-free multiple comparisons. Ph.D. thesis, Princeton
University (1963)

15. Park, J., Park, H., Choi, Y.J.: Data compression and prediction using machine
learning for industrial iot. In: 2018 International Conference on Information Net-
working (ICOIN). pp. 818–820 (2018)

16. Pliakos, K., Vens, C.: Feature induction based on extremely randomized tree paths.
Online proceedings pp. 3–18 (2016)

17. Sculley, D., Brodley, C.: Compression and machine learning: A new perspective on
feature space vectors. In: Data Compression Conference. pp. 332–341 (2006)

18. Vreeken, J., Van Leeuwen, M., Siebes, A.: Krimp: mining itemsets that compress.
Data Mining and Knowledge Discovery 23(1), 169–214


	Bitpaths: compressing datasets without decreasing predictive performance

