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Abstract. We evaluate the suitability of using supervised and unsuper-
vised rules, subgroups and redescriptions as new features and meaning-
ful, interpretable representations for classification tasks. Although using
supervised rules as features is known to allow increase in performance
of classification algorithms, advantages of using unsupervised rules, sub-
groups, redescriptions and in particular their synergy with rules are still
largely unexplored for classification tasks. To research this topic, we de-
veloped a fully automated framework for feature construction, selection
and testing called DAFNE – Descriptive Automated Feature Construc-
tion and Evaluation. As with other available tools for rule-based feature
construction, DAFNE provides fully interpretable features with in-depth
knowledge about the studied domain problem. The performed results
show that DAFNE is capable of producing provably useful features that
increase overall predictive performance of different classification algo-
rithms on a set of different classification datasets.

Keywords: feature construction, classification, redescription mining, rule
mining, subgroup discovery, CLUS-RM, JRip, M5Rules, CN2-SD

1 Introduction

With the rise of popularity and awareness of different predictive machine learning
algorithms able to provide huge number of often highly accurate predictions for
various tasks, there is also an increasing need to provide tools and techniques to
aid in the construction, extraction and selection of predictive attributes.

The main aim of feature construction is to find new features which capture
non-trivial, possibly non-linear interactions between existing, original features
[21, 29]. Its utility is assessed via increase in the predictive performance, high
importance of newly constructed features for the predictive task and through
better understanding of the underlying problem. Various types of feature con-
struction have been studied: creating rules [31] or using decision tree based algo-
rithms (Random Forest [40], Deep Forest [45]). The main advantage of rules is
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that they can simultaneously offer interpretative and performance improvement
for various classifiers [31, 32, 28, 44]. Rules can also be used as local predictors
[5, 11, 27] to form global classification models.

In this work, we extend the study of rule-based feature construction to include
subgroups, descriptive (unsupervised) rules and redescriptions. The main goal
is to asses if and when the latter can be more informative than supervised rules
or be used in synergy with supervised rules to improve performance. Subgroups
[42, 17] have the same form of a logical formula as regular rules but describe
subsets of instances such that their distribution of target labels significantly de-
viates from the target label distribution on the entire dataset. Redescriptions
[33, 9] are tuples of logical formulae that can contain conjunction, disjunction or
negation operator, with the constraint that each formula in a tuple (also called
a query) should describe very similar (or ideally the same) subsets of entities.
Redescription mining is unsupervised, descriptive task, with redescriptions rep-
resenting a second order constructs (tuples of rules that in a nearly equivalence
relation), forming complex but fully interpretable features.

As previously mentioned, rule-based features necessarily increase the dimen-
sionality of data. The detrimental effect of such increase can be alleviated using
different feature selection techniques [21, 14]. These techniques aim to eliminate
irrelevant features (these that provide no or very little information about the
target concept). Alternatively, feature extraction techniques [21, 39] map exist-
ing features (using some function) to a new (very often smaller) set of features
that capture important information about the relation of original features and
the target concept. Such features can be used independently from the original
feature set, but can also be added and used in synergy with original features.

2 Notation and related work

In this section, we define the most important terms necessary to understand the
approach and provide an overview of related work.

2.1 Notation and definition

In this work, we use one-view datasets D (one data table), containing |A| at-
tributes and |E| entities. Since we deal with a classification task, each entity
is assigned a target label y ∈ {c1, . . . , ck}, where a special case of Binary clas-
sification has y ∈ {0, 1}. We use M to denote an arbitrary machine learning
classification model that is trained on some data Dtrain, and it outputs a pre-
diction ŷ for each entity e ∈ Etest, where Etrain ∩ Etest = ∅.

The input data is used to create rules, subgroups and redescriptions. Rules
and subgroups are logical formulae containing conditions and conjunction logi-
cal operator, whereas redescriptions contain tuples of logical formulae contain-
ing conditions and conjunction, disjunction and negation logical operators. Each
query in a redescription can contain only attributes that are disjoint from at-
tribute of other queries in the redescription. In this work, we use redescriptions
formed by pairs of queries.
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2.2 Related work

Feature selection [21, 14] and feature construction [21, 29] are often used jointly
in predictive tasks. As feature construction increases the number of variables,
feature selection aims to choose the attributes containing the important informa-
tion about the target variable allowing faster training/predicting with machine
learning models and increasing their accuracy in practice (e.g [16, 23]).

Feature selection approaches [21, 14] include correlation-based, forward selec-
tion using Gram-Schmidt orthogonalization, mutual information or model-based
feature ranking, hybrid approaches, various feature subset selection methods,
wrapper and filter methods [22]. Some ensemble algorithms (e.g. random forest)
provide feature ranking which can be used for feature selection (see [15]). Feature
selection methods using models can be divided in performance-based approaches
and test-based approaches [15].

Performance-based approaches (e.g [35, 6]) combine feature selection with
a classifier-based feedback on the quality of the selected set of features. Test-
based approaches (e.g [1, 41]) combine permutation testing of attribute values
with feature ranking obtained by random forest algorithm to assess the real
significance of importance of original features.

Feature construction approaches include constructive induction [22], con-
struction using fragmentary knowledge [22], greedy feature construction [29] and
hybrid approaches (e.g [36]). New lines of research in this direction represent self-
supervised learning frameworks [2, 37] for learning useful new representations for
tabular data.

Constructive induction approaches such as [31, 32, 28, 44] construct new at-
tributes from subsets of existing attributes. Attributes in the subset can be
combined using conjunction, disjunction and negation logical operator [31, 32],
or more complex operators such as M-of-N [28] (at least one conjunction of m
out of N attributes is true), X-of-N [44] (for a given instance, it denotes the
number of attribute-value pairs that are true) or using arithmetic combination
of attributes [19]. Gomez and Morales [12] created a learning algorithm called
RCA (restricted covering algorithm) which tries to build a single rule for each
class with a predetermined number of terms. FRINGE by Pagallo et al. [30] is
a decision-tree based feature construction algorithm (it adaptively enlarges the
initial attribute set using NOT and AND logical operators for learning DNF
concepts). CITRE [25] and DC Fringe [43] combine existing attributes using
conjunction and disjunction operators to construct new features. FICUS [24]
generalizes previous approaches to allow combining existing features by some
user-predefined function. Garcia et al. [10] create a fuzzy rule-based feature con-
struction approach. Another line of research uses rules as local patterns to form
global prediction models [11, 5] or to rectify predictions of existing classification
algorithms [27].

Subgroups have been used as local patterns to build a global regression model
[13], as dummy variables to improve regression fit [7] and as local patterns to
understand the behaviour of spammers in a classification use-case [3].
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Redescription mining [33] aims to find subsets of entities that can be de-
scribed in multiple ways (re-described), discovering in that manner strong, equivalence-
like relations between different subsets of attributes.

3 The DAFNE framework

Fig. 1: DAFNE, framework for automated feature construction and evaluation.

The DAFNE framework (Figure 1) takes a standard, tabular dataset represent-
ing some kind of classification problem, creates a stratified split to train (80%)
and test (20%) dataset. Train set is used to create supervised rules using state
of the art algorithms JRip and PART implemented in Weka [8], subgroups are
created using the well known CN2-SD algorithm [20]. Descriptive (unsupervised)
rules and redescriptions are created using the state of the art redescription min-
ing algorithm CLUS-RM [26] on the entire dataset. The CLUS-RM algorithm
does not require knowledge about target labels and can thus utilize all entities
to create rules and redescriptions. Descriptive rules are obtained as a by-product
of redescription mining, these are actually query candidates for redescriptions.
The fact that in many applications rule-pairs match accurately for groups with
homogeneous target label (since these share many common properties) and the
fact that CLUS-RM aims to find pairs of rules that describe common subsets
of entities, led us to believe that this process might create useful unsupervised
rules and redescriptions for classification tasks. After descriptive objects (rules,
subgroups and redescriptions) have been obtained, the tool creates Binary fea-
tures representing each obtained object and enriches the attribute set of both
train and test data. The Boruta framework [18], which utilizes random forest of
decision trees, is used to detect a subset of provably useful attributes to predict
the given target label on the train set (these features will be used in further
evaluation). In this evaluation setting, we also apply Boruta to obtain provably
important set of features on the test set (users can observe changes in percent-
ages of important attributes for different types of objects compared to train
set). Selected set of provably useful features on a train set is further reduced us-
ing the feature selection approach proposed by Svetnik et al. [35] which returns



Rules, subgroups and redescriptions as features in classification tasks 5

the non-redundant set of features useful to predict the target label. To analyse
the usefulness of different types of objects, DAFNE creates a train/test dataset
containing: a) all original features (O), b) all non-redundant provably useful
original features (Osel), c) all non-redundant provably useful features (Allsel),
d) non-redundant provably useful original and features obtained from supervised
rules (OSRdel), e) non-redundant provably useful original and features obtained
from descriptive rules (ODRsel), f) non-redundant provably useful original and
features obtained from subgroups (OSgsel), g) non-redundant provably useful
original and features obtained from redescriptions (ORdsel). DAFNE further
trains each of the 8 different types of classification capable machine learning
algorithms: multilayer perceptron, J48, Decision Stump, Naive Bayes, Logistic
Model Trees, Logistic Regression and KStar available in Weka [8] and a Random
Forest of 600 Predictive Clustering trees (PCTs) trained using the CLUS frame-
work [4]. Trained models are evaluated on a test set and all constructed, selected
features, model evaluation results and analyses are returned to the user. The op-
timized, extended feature set (Optimized extended data representation in
Fig. 1) can be used to produce predictive models with improved performance
and/or use these new features for better interpretation and understanding of
the data and the problem domain.

The feature evaluation procedure performed by DAFNE is rigorous. From
provably important Boruta computed features to non-redundant set of features
and finally evaluation of selected features using different types of classifiers. It is
well known that adding useless features reduces classification accuracy of many
types of classification algorithms, thus newly constructed features on a train set
must be predictive in order to increase classifier score on a separate test set.
To further ensure that increase in classifier score is achieved only due to newly
constructed features or their synergy with original features, default parameters
are used to train all 8 classification algorithms. Using default parameters also
greatly reduces the execution time of feature evaluation. Parameters of each
classification algorithm would need to be tuned for every of 6 newly created
datasets which is unfeasible for large scale experimentation.

If classification performance of one or more classification algorithms is in-
creased on a test set compared to using only original features, DAFNE has
achieved the goal of detecting predictive features. Since using supervised rules
as features is known to improve classification accuracy and there exists use-cases
where using subgroups is beneficial as well in this setting, we aim to broaden
the evaluation of subgroups to more different datasets, investigate the use of
descriptive rules and redescriptions and to evaluate the effects of synergy of this
objects on classification accuracy.

3.1 Parameters used in DAFNE components

We fixed the parameters of DAFNE components as follows:

– JRip - default options, with minimal weight of entities per rule set to 1.0,
500 batch optimization runs and batch size of 200. Changes compared to
defaults were made to obtain larger number of rules.
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– PART - default options with a constraint of minimal 10 entities per rule.
– CN2-SD - default options (8 iterations, beam size of 5 and γ = 0.7).
– CLUS-RM - default options (redescription accuracy of 0.6) with 20 random

runs, 10 iterations per run, tree depth of 8, using conjunctive refinement pro-
cedure [26], conjunction, disjunction and negation operator, support size in
[10, 0.8|E|], maximal redescription p-value of 0.01 and output non-redundant
redescription set of maximal size 1000 [26]. The main aim is to increase the
number of produced redescriptions. Maximal support enables pruning unin-
teresting redescriptions and tautologies and is often set to 0.8 · |E|.
Rules and subgroups are filtered to eliminate redundant objects, subgroups

must have p-value ≤ 0.01. Fine-grained selection was performed by the Boruta
[18] and the feature selection approach by Svetnik et al. [35]. We use default
options for Boruta as suggested in [18] and increase the number of trees in a
forest to 2000 as suggested in [6]. For non-redundant feature selection [35], we
use default parameters as these are well justified in the varSelRF R package.

Classification algorithms were trained with default Weka options with maxi-
mal number of iterations of Logistic regression classifier set to 10000 to disallow
lengthy executions. The random forest of PCTs contains 600 trees with standard√
|A|+ 1 number of random subspaces. Maximal tree depth of 8 is used.

3.2 Use case scenario

DAFNE is constructed to tackle realistic problems in which one data table
(Dtrain) with target labels is available. Also, obtaining additional data table
(Dtest) without target labels is possible (through data collection, domain-level
experimentation or similar). The task is to predict the target label y for instances
in Dtest. When both data tables are available, the DAFNE uses Dtrain to create
supervised rules and subgroups and D = Dtrain ∪ Dtest to create unsupervised
rules and redescriptions. Notice that it is possible to iteratively extend the fea-
ture set with newly constructed unsupervised rules and redescriptions for any
consecutive test set. DAFNE simulates this process by dividing the annotated
data into artificial train and test set, performing the aforementioned feature
construction procedure and evaluating newly constructed features using several
machine learning algorithms and the target labels for Dtest, which were not used
during any step of rule or model creation. The fact that DAFNE can utilize
knowledge available in the test set is considered to be a significant advantage
compared to majority of other state of the art feature construction approaches.

4 Data description

We used 5 datasets: Abalone, Arrhythmia, Breast cancer, Wine and Sports Ar-
ticles, downloaded from the UCI Machine learning repository [38], to evaluate
the proposed methodology. We removed rows containing missing values in all
datasets since these are not supported by Boruta and tested DAFNE on the Ar-
rhythmia dataset in the original multi-class and the derived binary classification
setting. The binary setting simply predicts existence of arrhythmia (yes/no).
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5 Experiments and results

DAFNE was run 40 times on each dataset to obtain statistics about the useful-
ness of supervised/descriptive rules, subgroups and redescriptions to predict a
target concept on each of the aforementioned 5 datasets. Supervised rules and
subgroups are created using the same seed every time, effectively returning the
same set of rules and subgroups, redescriptions and descriptive rules change at
each run. Thus, we assess what is the overall change of the system depending on
the introduced descriptive rules and redescriptions.

Median percentage of selected rules, subgroups and redescriptions on a train
and test set by Boruta is reported in Table 1. This table also contains the num-
ber of times (out of 40) at least one member of the object type was found in
the non-redundant set of features. In Table 2, we report the median and maxi-
mal AUPRC measure [34] for each classifier on each dataset. We underline the
original or selected original features if they lead to the best performance of a
given model or boldface every combination of features that allow this model
to outperform identical model using original or selected original set of features.
We also boldface the maximal AUPRC score if the model achieves the same
maximal score as using original features but there exist runs where using newly
constructed features allowed outperforming a model trained only on original fea-
tures or using newly constructed features in synergy with original features allows
obtaining the same (maximal) result. If maximal result is achieved utilizing only
original features, the result is not displayed in boldface.

Results presented in Table 1 suggest that Boruta found that high percentage
of created subgroups are significant, followed by supervised rules, redescriptions
and descriptive rules. This is the expected trend since subgroups and super-
vised rules utilize target label information during creation. It is important to
notice that both redescriptions and descriptive rules are deemed important on
majority of datasets and that there are representatives of these objects in the
non-redundant sets of features used to train and evaluate classification models.
Boruta also determined that large number of objects, found important on the
train set, remains important for the prediction of target label on the test set.

Table 1: Median percentages of supervised rules (SR), descriptive rules (DR),
subgroups (Sg) and redescriptions (Rd) deemed provably important for predict-
ing the target class by the Boruta approach on the train (Tr) and test (Ts) set
obtained from each dataset. Num. nn. reports numbers of runs in which at least
one subgroup, supervised rule, descriptive rule and redesription occurred in the
non-redundant set of features used for training/testing of different classifiers.

D SgTr SRTr DRTr RdTr Num.nn SgTs SRTs DRTs RdTs

Abalone 85 42 11 34 32/12/23/9 49 7 3 3
Arrhythmia 100 71 2 < 1 40/40/22/3 33 0 0 0
Arrhythmiab 100 69 1 0 40/37/0/0 50 0 0 0
Breast cancer 100 83 5 13 40/37/2/1 100 33 3 11
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Wine 100 100 19 27 40/38/30/20 100 100 10 27
Sports articles 100 61 1 1 40/40/2/1 33 11 1 1

Results presented in Table 2 show that newly created features improve perfor-
mance (or allow obtaining the same maximal performance) of every of the 8
chosen classification models on at least 3 different datasets. Results confirm that
subgroups seem to be the most important features, however other types of objects
have a very important role as well. It is evident that using descriptive rules and
redescriptions can significantly increase classifier performance. For example, the
Decision Stump model has achieved the best performance using redescriptions as
features on the Breast Cancer dataset or using descriptive rules on Arrhythmia
dataset. If there existed supervised rules or subgroups more useful to predict
the target label, these would surely be chosen instead by the feature selection
procedure. Also, if there existed supervised, descriptive rules or subgroups with
similar predictive power as redescriptions on Breast Cancer dataset, these would
be used in at least some of the runs (where the predictive redescriptions were not
present) to obtain similar predictive performance. Redescriptions and descriptive
rules can also improve performance of complex classifiers such as Multilayer per-
ceptron, Logistic model trees, Decision trees and Random Forest of PCTs. Thus,
synergy or complementarity of different types of objects has played an impor-
tant role, as noticeable from the results (there are instances where using selected
subset from the set of all features yields the highest score, e.g Arrhythmia with
binary class label).

Table 2: Evaluation results of 8 selected classifiers.

M D O Osel Allsel OSgsel OSRsel ODRsel ORdsel

AB 0.203 0.179 0.194 0.195 0.179 0.194 0.183
0.203 0.202 0.223 0.233 0.217 0.219 0.227

AR 0.668 0.608 0.653 0.691 0.569 0.594 0.611
0.668 0.722 0.733 0.729 0.738 0.722 0.722

ARB 0.798 0.508 0.825 0.822 0.659 0.508 0.508
0.798 0.526 0.849 0.849 0.694 0.526 0.526

MLP BC 0.984 0.966 0.911 0.939 0.956 0.966 0.966
0.984 0.983 0.965 0.968 0.977 0.982 0.983

W 1.0 0.905 0.988 0.927 0.923 0.968 0.905
1.0 1.0 1.0 0.989 0.994 1.0 1.0

SA 0.868 0.855 0.788 0.806 0.842 0.855 0.855
0.868 0.892 0.848 0.855 0.877 0.892 0.892

AB 0.217 0.217 0.206 0.207 0.217 0.212 0.217
0.217 0.217 0.229 0.230 0.225 0.229 0.223

AR 0.788 0.717 0.718 0.715 0.682 0.714 0.717
0.788 0.796 0.780 0.793 0.789 0.792 0.796

ARB 0.841 0.662 0.859 0.835 0.666 0.662 0.662
0.841 0.662 0.870 0.846 0.726 0.662 0.662

LMT BC 0.992 0.967 0.948 0.939 0.969 0.967 0.967
0.992 0.982 0.958 0.939 0.976 0.983 0.982

W 1.0 0.928 0.948 0.890 0.887 0.985 0.952
1.0 1.0 0.948 0.995 0.981 1.0 1.0

SA 0.884 0.855 0.888 0.866 0.868 0.855 0.855
0.884 0.881 0.902 0.895 0.896 0.881 0.881
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Table 2: Evaluation results of 8 selected classifiers.

M D O Osel Allsel OSgsel OSRsel ODRsel ORdsel

AB 0.160 0.160 0.160 0.160 0.160 0.160 0.160
0.160 0.168 0.167 0.167 0.168 0.167 0.168

NB AR 0.472 0.645 0.713 0.714 0.656 0.647 0.643
0.472 0.715 0.753 0.758 0.729 0.708 0.715

ARB 0.719 0.617 0.863 0.846 0.719 0.617 0.617
0.719 0.618 0.872 0.858 0.720 0.618 0.618

BC 0.983 0.966 0.970 0.971 0.970 0.966 0.966
0.983 0.979 0.974 0.976 0.978 0.979 0.979

W 0.991 0.901 0.976 0.945 0.945 0.975 0.920
0.991 1.0 1.0 0.998 0.998 1.0 1.0

SA 0.845 0.819 0.838 0.828 0.830 0.819 0.819
0.845 0.827 0.855 0.837 0.841 0.827 0.827

AB 0.08 0.08 0.08 0.08 0.08 0.08 0.08
0.08 0.08 0.08 0.08 0.08 0.08 0.08

AR 0.163 0.163 0.162 0.162 0.138 0.163 0.163
0.163 0.163 0.162 0.162 0.138 0.20 0.163

ARB 0.518 0.551 0.682 0.682 0.620 0.551 0.551
0.518 0.551 0.682 0.682 0.620 0.551 0.551

DSt BC 0.816 0.816 0.839 0.839 0.790 0.816 0.816
0.816 0.864 0.839 0.839 0.790 0.867 0.881

W 0.570 0.570 0.604 0.604 0.630 0.605 0.570
0.570 0.610 0.630 0.630 0.630 0.667 0.667

SA 0.724 0.724 0.722 0.722 0.724 0.724 0.724
0.724 0.724 0.722 0.722 0.724 0.724 0.724

AB 0.199 0.199 0.197 0.199 0.199 0.199 0.199
0.199 0.210 0.210 0.210 0.210 0.210 0.210

AR 0.40 0.707 0.647 0.640 0.660 0.707 0.707
0.40 0.776 0.729 0.719 0.734 0.776 0.776

ARB 0.678 0.508 0.857 0.835 0.666 0.508 0.508
0.678 0.520 0.868 0.859 0.701 0.520 0.520

LogR BC 0.985 0.965 0.894 0.962 0.890 0.965 0.965
0.985 0.986 0.952 0.974 0.962 0.986 0.986

W 0.995 0.910 0.966 0.942 0.926 0.938 0.914
0.995 1.0 1.0 1.0 1.0 1.0 1.0

SA 0.883 0.867 0.890 0.886 0.865 0.865 0.867
0.883 0.882 0.90 0.891 0.903 0.882 0.882

AB 0.187 0.187 0.173 0.173 1.0 0.187 0.187
0.187 0.194 0.191 0.192 0.194 0.193 0.194

AR 0.468 0.50 0.571 0.568 0.513 0.510 0.50
0.468 0.590 0.644 0.640 0.607 0.590 0.590

ARB 0.577 0.634 0.814 0.792 0.737 0.634 0.634
0.577 0.634 0.849 0.821 0.745 0.634 0.634

KS BC 0.975 0.966 0.969 0.970 0.968 0.966 0.966
0.975 0.981 0.973 0.970 0.968 0.966 0.966

W 0.980 0.878 0.981 0.946 0.955 0.988 0.926
0.980 1.0 1.0 1.0 1.0 1.0 1.0

SA 0.792 0.796 0.784 0.770 0.814 0.796 0.96
0.792 0.837 0.831 0.813 0.862 0.837 0.837

AB 0.10 0.10 0.107 0.102 0.10 0.101 0.10
0.10 0.129 0.129 0.129 0.129 0.129 0.129

AR 0.543 0.331 0.396 0.40 0.351 0.344 0.331
0.543 0.542 0.527 0.530 0.433 0.573 0.542

ARB 0.697 0.575 0.727 0.737 0.658 0.575 0.575
0.697 0.575 0.730 0.754 0.677 0.575 0.575

J48 BC 0.875 0.816 0.844 0.853 0.837 0.816 0.816
0.875 0.922 0.853 0.853 0.934 0.922 0.960

W 0.95 0.738 0.880 0.886 0.880 0.852 0.781
0.95 0.954 0.886 0.886 0.880 1.0 0.963

SA 0.664 0.739 0.793 0.777 0.785 0.739 0.739
0.664 0.773 0.849 0.792 0.807 0.773 0.773

AB 0.180 0.176 0.174 0.173 0.176 0.176 0.176
0.180 0.176 0.194 0.185 0.199 0.196 0.189

AR 0.767 0.612 0.672 0.681 0.577 0.606 0.612
0.767 0.728 0.747 0.744 0.707 0.734 0.728

ARB 0.826 0.633 0.812 0.791 0.752 0.633 0.633
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Table 2: Evaluation results of 8 selected classifiers.

M D O Osel Allsel OSgsel OSRsel ODRsel ORdsel

0.826 0.633 0.830 0.825 0.765 0.633 0.633
RF 600

PCT BC 0.988 0.956 0.964 0.960 0.968 0.956 0.956
0.988 0.977 0.973 0.966 0.976 0.976 0.977

W 1.0 0.850 0.991 0.928 0.923 0.986 0.895
1.0 1.0 1.0 0.998 0.998 1.0 1.0

SA 0.938 0.827 0.868 0.827 0.860 0.827 0.827
0.938 0.867 0.875 0.852 0.880 0.867 0.867

6 Conclusion and future work

In this work we created several types of interpretable data models to improve rep-
resentations of tabular data. A new feature construction and evaluation frame-
work DAFNE includes a set of feature generating algorithms, producing su-
pervised and unsupervised rules, subgroups and redescriptions, and advanced
feature selection methodology to construct relevant and non-redundant feature
sets. These are used to extend original problem representation with new inter-
pretable and informative features for downstream supervised tasks. Evaluation
results across 5 different datasets confirmed benefits of using supervised rules
as features in classification tasks and showed that subgroups represent highly
relevant features across tested datasets. Our study also shows that rules and
redescriptions, constructed in a specific unsupervised manner, can form informa-
tive features increasing performance of various classification algorithms. Finally,
the synergy of different types of features often allowed increasing classification
performance compared to the original representation. Future work includes eval-
uating DAFNE on more challenging datasets or tasks and comparing against
the state-of-the-art self-supervised learning frameworks for learning useful new
representations for tabular data.
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