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Abstract. In order to overcome the classical methods of judgement, in
the literature there is a lot of material about different methodology and
their intrinsic limitations. One of the most relevant modern model to
deal with votation system dynamics is the Majority Judgement.
It was created with the aim of reducing polarization of the electorate in
modern democracies and not to alienate minorities, thanks to its use of
a highest median rule, producing more informative results than the ex-
isting alternatives. Nonetheless, as shown in the literature, in the case of
multiwinner elections it can lead to scenarios in which minorities, albeit
numerous, are not adequately represented.
For this reason our aim is to implement a clustered version of this algo-
rithm, in order to mitigate these disadvantages: it creates clusters taking
into account the similarity between the expressed judgements and then
for, each of these created groups, Majority Judgement rule is applied to
return a ranking over the set of candidates. These traits make the algo-
rithm available for applications in different areas of interest in which a
decisional process is involved.

Keywords: Decision Making · Social Choice · Cluster · Majority Judge-
ment · K-Medoids.

1 Introduction

Voting rules are different and behave differently according to their limitations
or sometimes paradoxal traits. Asking for a more inclusive democracy also rep-
resents a modern citizens’ quest, but what does exactly it mean? First of all,
we want to underline why a majority voting system embodies the best option
between the classical judgement methods.
Consider three agents who express their binary judgement (”Yes” or ”No”) for
two statements A, B, A ∧ B and A ←→ B. Premised-based rule take majority
decisions on A and B and then infers conclusions on the other two propositions.
As shown in the table 1, results are quite different based on the used rule.
We now focus on Agent 2 case: he’s represented in just one of the single proposi-
tion (A), and his judgement doesn’t agree with the outcome, in the other cases.
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So, a huge liability of this model could appear: Agent 2 could think about ma-
nipulating the outcome, pretending a disagreement for A. The premised model
reacts by providing as final outcome on 3 agents’ votation a ”No” for both A ∧
B and A ←→ B, as originally expressed by Agent 2.

A B A ∧ B A ←→ B

Agent 1 Yes Yes Yes Yes
Agent 2 Yes No No No
Agent 3 No Yes No No

Premised rule Yes Yes Yes Yes
Majority Yes Yes No No

Table 1. Three agent case of voting

In such a way, a strategical approach on voting could lead to a deviation effect,
providing as result the best tricker’s choice.
Looking at the table, we can also highlight another paradoxal aspect: considering
majority-based outcome, the latest two propositions are inconsistent with ”Yes”
value assigned to both A and B.
This is known as discursive dilemma and deals with inconsistency problem in
judgement aggregation based on majority rule [10].
Both premised and majority rule present drawbacks, but the latter has one im-
portant feature: it doesn’t suffer from deficiency shown by the first, so that, if an
Agent care about the number of propositions agreeing with his own judgement,
then it is always in his best interest to report his true preference. For this rea-
son we focus our attention on majority rule as a transparent asset in decisional
process, while trying to deal with its intrinsic problems related to judgement
aggregation [11].
Our attempt is not aimed to solve above-mentioned dilemma, rather joining a
more refined majority rule (Majority Judgement) with cluster approach’s advan-
tages in aggregating similar patterns.

2 Majority Judgement

2.1 Formal aspects

To introduce social choice theory formally, consider a simple decision problem:
a collective choice between two alternatives. The first involves imposing some
‘procedural’ requirements on the relationship between individual votes and social
decisions and showing that majority rule is the only aggregation rule satisfying
them. May (1952) [9] [32] introduced four such requirements for majority voting
rule must satisfies:
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– Universal domain: the domain of admissible inputs of the aggregation rule
consists of all logically possible profiles of votes < v1, v2, ..., vn >, where each
vi ∈ [−1, 1] (to cope with any level of ‘pluralism’ in its inputs);

– Anonimity: applying any kind of permutation on individual preferences
does not affect the outcome (to treat all voters equally), i.e.,

f(v1, v2, ..., vn) = f(w1, w2, ..., wn) (1)

– Neutrality: each alternative has the same weight and for any admissible
profile < v1, v2, ..., vn >, if the votes for the two alternatives are reversed,
the social decision is reversed too (to treat all alternatives equally), i.e.

f(−v1,−v2, ...,−vn) = −f(v1, v2, ..., vn) (2)

– Positive responsiveness: For any admissible profile < v1, v2, ..., vn >, if
some voters change their votes in favour of one alternative (say the first) and
all other votes remain the same, the social decision does not change in the
opposite direction; if the social decision was a tie prior to the change, the tie
is broken in the direction of the change, i.e., if [wi > vi for some i and wj = vj
for all other j] and f(v1, v2, ..., vn) = 0 or 1, then f(w1, w2, ..., wn) = 1.

The May theorem (Theorem: ”An aggregation rule satisfies universal domain,
anonymity, neutrality, and positive responsiveness if and only if it is majority
rule”) provides an argument for the majority rule based on four plausible pro-
cedural desires and the theorem helps us characterize other aggregation rules in
terms of which desiderata they violate.
But that’s with regards to binary choice. Now, we consider a set N = [1, 2, ..., n]
of individuals (n ≥ 2). Let X = [x, y, z, ...] be a set of social alternatives, for
example possible policy platforms, election candidates, or other[8]. Each indi-
vidual i ∈ N has a preference ordering Ri over these alternatives that rapresents
a complete and transitive binary relation on X. For any x, y ∈ X, xRiy means
that individual i weakly prefers x to y. We write xPiy if xRiy and not yRix
(‘individual i strictly prefers x to y’), and xIiy if xRiy and yRix (‘individual i
is indifferent between x and y’). But we must specify that at the heart of so-
cial choice theory is the analysis of preference aggregation [33], understood as
the aggregation of several individuals’ preference rankings of two or more so-
cial alternatives into a single, collective preference ranking (or choice) over these
alternatives [7]. In case of many successful alternatives, we need a more sophis-
ticated model to deal with preferences’ aggregation [6]. A multi-winner election
(V,C,F,k) is defined by a set of voters V expressing preferences over a number
of candidates C, and then a voting rule F returns a subset of size k winning
candidates. A voting rule can perform its role on different types of ordered pref-
erences, even though the most common refers to a pre-fixed linear order on the
alternatives. In most of cases, these are chosen a priori.
Formally we denote set of judgements performed by the i-th voter as profile
preferences Pi. Each profile contains information about the grade of candidates
by voters. The voting rule F associates with every profile P a non-empty subset



4 Authors Suppressed Due to Excessive Length

of winning candidates.
In multi-winner elections more precise traits are required, compared to the ones
stated in May’s theory [12]. Indeed:

– Representation: for each partition of voters

Vi ∈ V (with |Vi| ≥
⌊n
k

⌋)
(3)

at least one successful candidate is elected from that partition;
– Proportionality: for each partition of voters

Vi ∈ V (with |Vi| ≥
⌊n
k

⌋)
(4)

number of elected candidate is proportional to the partition’s size.

An implicit assumption so far has been that preferences are ordinal and not
interpersonally comparable: preference orderings contain no information about
each individual’s strength or about how to compare different individuals’ pref-
erences with one another. Statements such as ‘Individual 1 prefers alternative
x more than Individual 2 prefers alternative y’ or ‘Individual l prefers a switch
from x to y more than Individual 2 prefers a switch from x* to y*’ are consid-
ered meaningless. In voting contexts, this assumption may be plausible, but in
welfare-evaluation contexts—when a social planner seeks to rank different social
alternatives in an order of social welfare—the use of richer information may be
justified.

2.2 Single-winner Majority judgement

In order to describe the majority judgement, we need to use a table that refers to
ranking for all the candidates C, by using tuples [5]. Suppose having six possible
choices we may use the words: excellent, very good, good, discrete, bad, very bad.
So each candidate is described by a bounded set of vote.
In general, letting α = (α1, α2, ..., αn) be a candidate A’s set of n grades (written
from highest to lowest, αi ≥ αi+1 for all i), there is a majority of (at least) n−k+1

for n A’s grade to beat most αk and at least αn−k+1, for all 1 ≤ k ≤ (n+1)
2 . We

call this the (n-k+1) - majority for [αk , αn−k+1].
As already mentioned any possible ranking tuple that we choose to describe
must follow ordering relations.
So the ranking should respect domination: namely, evaluate one candidate above
another when that candidate’s grades dominate the other’s.
The described majority judgement is a single winner system, found comparing
recursively median grade between candidates: first, grades are ordered in columns
from the highest to the lowest according to the order relation, then the middle
column (lower middle if number of grades are even) with the highest grade be-
tween candidates’row is selected. If there’s a tie, algorithm keeps on discarding



Cluster algorithm for social choice 5

Fig. 1. Example with 5 grades, between the dashed lines it’s reported the median
grade. Highest occurrences in ”Good” determines the winner.

grades equal in value to the shared median, until one of the tied candidate is
found to have the highest median. Before describing how it’s possible to gen-
eralize this single winner system to a multi winner strategy, thanks to the use
of clusters, we focus our attention on how these works, analyzing in particular
K-medoids.

3 Clustering approach

3.1 How clusters work

There’s no precise definition of clustering, mostly due to the huge variety in dif-
ferent clustering algorithms. We can state that they share the ability to divide
data into groups with some common features. According to some general traits,
we can distinguish types of clustering:
1. Connectivity models: data points in a sample space exhibits similarity ac-
cording to the distance between them. Two approaches are equally valid: bottom-
up where each observation constitutes a group and then pairs of clusters are
merged; top-down, where observation are included in one cluster and then it’s
segregated; but in both approaches is not included the possibility of modifying
a cluster once created;
2. Distribution models: once created a cluster, model check probabilities on
observations following a particular distribution. Good performances are not al-
ways guaranteed since these models are prone to overfit data if no constraint on
complexity is made;
3. Density models: areas of higher density are identified and local cluster are
there created, while remaining data can be grouped into arbitrary shaped region,
with no assumption about da ta distribution; for their flexibility, these models
are fit to handle noise better than organizing data on fixed required body.
Since we would like to model clusters that satisfy requirements expressed before,
based on pretty fixed structure with no assumption about distribution followed
by data, it seems more accurate considering a different class of clustering algo-
rithm known as centroid models.

3.2 K-Medoids

Clustering is the process of grouping a set of objects in order to have each sim-
ilar object to each other in one cluster, that are dissimilar to objects in other
clusters.
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For our goal, namely selecting winners from a group of candidates, K-medoids
clustering are used, because medoids are the representative objects that are con-
sidered, in order to have a result that belongs to the group of candidates: it is
based on the most centrally located object in a cluster, so it is less sensitive to
outliers in comparison with the K-means clustering, which is not the best model
in our case since it could result in something that is not present in the candi-
date list due to the fact that is an average-based method rather than median. In
fact, the medoid is a data point (unlike the centroid) which has the least total
distance to the other members of its cluster.
Another advantage for this choice is that the mean of the data points is a measure
that gets highly affected by the extreme points; so, in K-Means algorithm, the
centroid may get shifted to a wrong position and hence result in incorrect clus-
tering if the data has outliers because then other points will move away from.
On the contrary, the K-Medoids algorithm is the most central element of the
cluster, such that its distance from other points is minimum. Thus, K-Medoids
algorithm is more robust to outliers and noise than K-Means algorithm.
The K-medoid we use is part of the python sklearn library [13], which is ori-
ented to machine learning. This library supports partitioning around medoids
(PAM) [2] proposed by Kaufman and Rousseeuw (1990), that is known to be
most powerful. The workflow of PAM is described below [1].
The PAM procedure consists of two phases: BUILD and SWAP :

– In the BUILD phase, primary clustering is performed, during which k objects
are successively selected as medoids.

– The SWAP phase is an iterative process in which the algorithm makes at-
tempts to improve some of the medoids. At each iteration of the algorithm,
a pair is selected (medoid and non-medoid) such that replacing the medoid
with a non-medoid object gives the best value of the objective function (the
sum of the distances from each object to the nearest medoid). The procedure
for changing the set of medoids is repeated as long as there is a possibility
of improving the value of the objective function.

Suppose that n objects having p variables each should be grouped into k (k < n)
clusters, where k is known. Let us define j-th variable of object i as Xij (i =
1, ..., n; j = 1, ..., p). As a dissimilarity measure is used the Euclidean distance,
that is defined, between object i and object j, by:

dij =

√√√√ p∑
a=1

(Xia −Xja)2 (5)

where i and j range from 1 to n. The medoids is selected in this way:

– calculate the Euclidean distance between every pair of all objects;
– calculate vj =

∑n
i=1

dij∑n

l=1
dil

;

– sort all vj for j = 1, ..., n in ascending order and select the first k object that
have smallest initial medoids value;
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– from each object to the nearest medoid we can obtain the initial cluster
result;

– calculate the sum of distances from all objects to their medoids;
– update the current medoid in each cluster by replacing with the new medoid,

selected minimizing the total distance from a certain object to other objects
in its cluster;

– assign each object to the nearest medoid and obtain the cluster result;
– calculate the sum of distance from all objects to their medoids, so if the sum

is equal to the previous one, then stop the algorithm; otherwise, go back to
the update step.

In our case, prior knowledge about the number of winners is required, and iden-
tified clusters are restricted in minimum size that is number of voters on the
number of candidates (nk ).

3.3 Clustered Majority Judgement

Multi winner majority judgement exploits clustering approach to apply to each
group majority judgement [4]. Given k the number of candidates to be elected,
algorithm seeks the optimal number of cluster to create.
This ranges from 1 to k and has to satisfy an important additional requirement:
once selected a number of clusters, if a tie occurs and so k’ vacant seats are left,
algorithm is repeated k’ times until tie’s broken. In case there’s no broken tie,
fixed number of cluster is changed.

3.4 Algorithm

In order to explain how the algorithm deals with polarization problem, most
relevant steps are described in pseudocode and in annotated strides:

1. set the number of winners as maximum number of clusters;
2. cluster are created decreasing the previous maximum number of clusters

until the optimal number is not achieved. This number is bound by the
size of cluster, that satisfies the following proportion: number of voters :
number of winners = number of voters in one cluster : one winner (line 8
in pseudocode);

3. the function winners calculates the median for every created cluster (line 15
of pseudocode);

4. check that winners from cluster are different between each other (line 29 in
pseudocode); in case it’s not true (condition=”ko” on pseudocode) algorithm
goes back to step 2 with a maximum number of cluster equal to number of
vacant seats and the proceedings are held until all seats have been filled.
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Algorithm 1

Require: k ≥ 0
Ensure: n winners = (n1, ..., nk), k > 1

k ← number winners
max cluster ← k
condition← ”ko”
while condition = ”ko” do

cluster list← cluster(vote list)
for all list cluster do

winners per cluster ← compute winners(cluster)
all winners← list of all winners(winners per cluster)

end for
list winner distinct = list of all distinct winners(all winners)
option remaining ← number winners− len(list winner distinct)
if option remaining = 0 then

condition =′ ok′

else
k ← option remaining
condition←′ ko′

end if
end while

3.5 Case Studies

In this section, we describe two interesting comparisons of majority judgement
(MJ) and clustered majority judgement (CMJ).

Case study 1: President of the Republic election In order to test our
algorithm, we asked an heterogeneous group of voters to express judgements on
a pre-defined list of possible candidates as President of the Republic before the
elections took place. This list has been created according to the rumours circu-
lated on that period, creating a bias effect on our results, as it was excluded a
possible rielection of Sergio Mattarella.
In spite of it, we focus on how the algorithm has worked in order to balance
polarization, returning a subset of winners with size chosen a priori, that we
may interpret as best solutions for majority of people who took part into the
venture.
Input parameters of Clustered Majority Judgement test are Excellent, Very
Good, Good, Acceptable, Poor, To Reject, No Opinion and the number of win-
ners is set a priori equal to 3. 125 voters took part into this election and the
algorithm form three clusters, exactly like the number of winners.
Testing our algorithm on the described election has shown how difference pref-
erence has a leverage on judgement aggregation: for example, voters in Cluster 1
are more bound to express ”Good” judgement for candidates considered neutral
in terms of political ideas, than the cluster 3 in which voters have a tendency
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in judging neutral ones as ”Fair” or ”Poor”. Cluster 2 has intermediate traits
and no particular tendency is emphasized. We can compare CMJ results with

Cluster Cluster size Winner

Cluster 1 65 Mario Draghi
Cluster 2 35 Paolo Gentiloni
Cluster 3 25 Anna Finocchiaro

Table 2. CMJ results

Ranking MJ Candidate

1 Mario Draghi
2 Paolo Gentiloni
3 Emma Bonino

Table 3. Top 3 of single-winner Majority Judgement applied to voters

single-winner MJ ranking, comparing the tables tab3 and tab2. The comparison
shows different results for the third candidate, highlighting how clustering influ-
ences outcome, giving more weight to minorities’ judgement.

3.6 Case Study 2: Working hours per week

The last case study is a good paradigm for deciding how to manage working
hours in the office, given a fixed number of working hours to be done (18 hours).
In this case, we asked 160 students of University Federico II of Naples to choose
the best combination of working hours, in presence (P) or with online lectures
(O). We used again the grades Excellent, Very Good, Good, Acceptable, Poor,
To Reject, No Opinion and the five options are:

1. 6 hours (P) - 6 hours (O) - 6 hours (P or O)
2. 10 hours (P) - 4 hours (O) - 4 hours (P or O)
3. 8 hours (P) - 6 hours (O) - 4 hours (P or O)
4. 7 hours (P) - 9 hours (O) - 2 hours (P or O)
5. 5 hours (P) - 5 hours (O) - 8 hours (P or O)

The results of MJ method, with the traditional compute of medians takes back
as winner the option 4 (7 hours (P) - 9 hours (O) - 2 hours (P or O)) that has
the highest number of ”Good” votes.
Instead the compute of winner with CMJ method takes back a different situa-
tion: we fixed 2 as number of winners (and number of clusters) and the first one
is the option 3 (8 hours (P) - 6 hours (O) - 4 hours (P or O)) and the second
one is the option 4, the same winner of MJ method.
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As we can see, probably because the number of voters is quite high, the results
are not the same like in case study 2. With CMJ, we take into account the wide
spectrum of preferences, with special regards for the most polarising ones, which
are the most influent in creating different clusters.
Especially for this reason, we may prefer CMJ to MJ for this case-study’s looka-
like situations, where a shared solution should be taken, considering the different
impact it can have on the heterogenous groups (clusters) the judgement is made
by.

Conclusions

In section 1, we dealt with logical issues involved in voting rules and judgement
aggregation, highlighting majority rule’s resistance to strategical vote.
In section 2, a more fined model of majority rule, Majority Judgement, has been
presented as an option to better estimate the most shared candidate.
In section 3, the related works have been shown and in section 4, all possible
categories of clustering approach has been reported in order to choose the fittest
one for our generalization of Majority Judgement as a multi-winner strategy.
After that, three different case studies are reported, with a particular attention
to the comparison between MJ and CMJ results.
In spite of non-deterministic nature of K-Medoids, Clustered Majority Judge-
ment is thought to be used in high populated disputes. For these reasons, we feel
confident about clustering’s role of taking into account all different perspectives
could be shown in such situation.
Moreover, our implementation is not strictly linked to political field, as is clearly
shown in the case studies, mostly because it requires only some fixed parameters:
number of winners, number of grades and grades themselves.
An important future challenge could be speeding up the algorithm or making
a more flexible structure, even though all the constraints already explained in
previous sections need to be satisfied.
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