
Anomaly Detection for Physical Threat
Intelligence

Paolo Mignone1,2[0000−0002−8641−7880], Donato Malerba1,2[0000−0001−8432−4608],
and Michelangelo Ceci1,2[0000−0002−6690−7583]

1 Department of Computer Science, Via Orabona, 4, 70125, University of Bari Aldo
Moro, Bari, Italy

2 Big Data Lab, National Interuniversity Consortium for Informatics (CINI), Via
Ariosto, 25, 00185, Rome, Italy

Abstract. Anomaly detection is a machine learning task that has been
investigated within diverse research areas and application domains. In
this paper, we performed anomaly detection for Physical Threat Intel-
ligence. Specifically, we performed anomaly detection for air pollution
and public transport traffic analysis for the city of Oslo, Norway. To
this aim, the state-of-the-art method SparkGHSOM was considered to
learn predictive models for normal (i.e. regular) scenarios of air qual-
ity and traffic jams in a distributed fashion. Furthermore, we extended
the main algorithm to make the detected anomalies explainable through
an instance-based feature ranking approach. The results showed that
SparkGHSOM is able to detect anomalies for both the real applications
considered in this study, despite the fact it was designed for different
tasks.

Keywords: Anomaly detection · Air pollution · Public transport traffic.

1 Introduction

Anomaly detection is a machine learning task that refers to the problem of identi-
fying data that do not conform to patterns observed in historical data. These pat-
terns represent the expected behaviour in normal conditions. Therefore, anomaly
detection is usually performed through a data-driven algorithm to construct a
model which will be able to detect a specific measurement/object/instance/obser-
vation as anomalous with respect to the historical data already seen. Anomaly
detection is a very general task that finds applications in many real-domain
scenarios such as fraud detection for credit cards, insurance, or health care, in-
trusion detection for cyber-security, fault detection in safety-critical systems,
and military surveillance for enemy activities [6].

In this paper, we consider the Anomaly Detection task for the purposes of
Physical Threat Intelligence. Specifically, we propose an algorithm for anomaly
detection which works on data continuously collected by geo-located sensors lo-
cated in urban areas. The data refer to physical information (e.g. temperature,
number of vehicles crossing a gate, number of pedestrians in a given area, PM10

2 P. Mignone et al.

level at certain points in the town, etc.). The goal is to identify an anomalous, not
expected, behaviour for one or many values simultaneously, considering the spe-
cific time, date and spatial coordinates of the considered observation. This would
give the opportunity to Security Operators to understand potentially dangerous
situations and take the appropriate actions in time.

The task we consider hereby is particularly challenging since data generated
by sensors are big in size and have spatial and temporal coordinates that make
the data not independent. Indeed, the spatial proximity of sensors introduces
spatial autocorrelation in functional annotations and violates the usual assump-
tion that observations are independently and identically distributed (i.i.d.). Al-
though the explicit consideration of these spatial dependencies brings additional
complexity to the learning process, it generally leads to increased accuracy of
learned models [8]. In addition, data generated by sensors are also affected by
temporal autocorrelation, since they i) tend to have similar values at the same
time on close days; ii) have a cyclic and seasonal (over days and years) behavior;
iii) tend to show the same trend over time.
While stream mining algorithms deal with both i) and ii), they may fail to
consider iii), since they tend to better represent the most recently observed con-
cepts, forgetting previously learned ones [1]. On the contrary, time series-based
approaches are able to deal with iii), but may fail to consider i) and ii). In fact,
they typically require the size of the temporal horizon as an input: Considering
a short-term horizon (e.g., daily) excludes a long-term horizon (e.g., seasonal)
and vice versa. On the contrary, in the approach presented in this paper, we
propose a time-series approach that exploits both spatial and temporal features,
in order to take into account all the aspects mentioned before. In particular, the
method addresses the problem of identifying complex spatio-temporal patterns
in sensor data by means of Self-Organizing Maps (SOMs).

A SOM [4] is a neural-network-based clustering algorithm that operates by
mapping high-dimensional input data into a 2-dimensional space implemented
by a grid of neurons called feature map. In this paper, we consider GHSOMs,
(Growing Hierarchical SOMs) that are particularly suitable for time series data
and better capture spatio-temporal information thanks to the hierarchical orga-
nization of the SOMs that better adapt to complex data distribution. Specifically,
we consider the distributed extension Spark-GHSOM [6], that exploits the Spark
architecture to process massive data, like those coming from sensors. Since GH-
SOMs are designed for clustering and not for anomaly detection tasks, we extend
the learning algorithm Spark-GHSOM in order to learn GHSOMs for anomaly
detection, in an unsupervised fashion.

2 Spark-GHSOM

Spark-GHSOM [6] was introduced to overcome two limitations of the classi-
cal GHSOMs. Indeed, a GHSOM i) requires multiple iterations over the in-
put dataset making it intractable on large datasets; ii) it is designed to handle
datasets with numeric attributes only, representing an important limitation as

Anomaly Detection for Physical Threat Intelligence 3

most modern real-world datasets are characterized by mixed attributes (numer-
ical and categorical). Therefore, Spark-GHSOM exploits the Spark platform to
process massive datasets in a distributed fashion. Furthermore, it exploits the
distance hierarchy [2] to modify the optimization function of GHSOM so that it
can (also) coherently handle mixed-attribute datasets. Spark-GHSOM showed
high accuracy, scalability, and descriptive power on different datasets.

The first step in the GHSOM algorithm is to compute the inherent dissim-
ilarity in the input data with different types of attributes. Classical GHSOMs
exploit the mean quantization error. However, this error is suitable for numeri-
cal attributes only. While there is no standard definition of mean for categorical
attributes, SparkGHSOM replaces the mean quantization error by considering
instead the variance in order to assess the quality of map and neurons. For
categorical attributes, unlikability is a good measure to estimate how often the
values differ from one another [3]. Formally, let D the dataset under analysis,
the unlikability for a categorical attribute A of D is defined as:

U(A) =
∑

i∈domain(A)

pi(1− pi) (1)

where pi =
frequency(Ai,D)

|D| ,Ai is the i -th value of the attributeA and frequency(Ai,D)
is the absolute frequency of the value Ai for the attribute A in D. Therefore,
SparkGHSOM computes the overall variance of the dataset as follows:

σ =
∑

A∈featureset

1
num(A)σ(A) + 1

cat(A)U(A)

2
(2)

where 1
num(A) (resp. 1cat(A)) is 1 when the attribute A is numerical (resp.

categorical), 0 otherwise. σ(A) represents the classical variance for the attribute
A when it is numerical.

The distance hierarchy [2] is considered to compute the similarities among
the categorical values. To compute the distance among categorical values, a
distance hierarchy for each categorical attribute must be provided in advance.
Similar values according to the concept hierarchy are placed under a common
parent which represents an abstract concept. The GHSOM training process takes
into account mixed attributes and consists in finding the winner (closest) neuron
of the SOM w.r.t. the single input instance according to the distance hierarchy.

In the first step, the winner neuron is identified for the input instance accord-
ing to the distance hierarchy. Therefore, the neuron’s weight vector is modified
by a certain amount to match the instance vector. In the hierarchy tree of the
concepts, where the leaves represent the actual values of the instances and the
non-leaf nodes represent the neurons, this process pulls the neuron point towards
its leaf in order to ”specialize” what the neuron describes.

In the second step, the closest winner neuron and its surrounding neigh-
bor neurons of the SOM are adapted moving them towards the input instance.
This training process requires a defined number training epochs over the input
dataset. The training is governed by the Mean Quantization Error (MQE) of a

4 P. Mignone et al.

neuron, that is the total deviation of the neuron from its mapped input instances.
The MQE for a SOM layer is computed as the average MQE of all the neurons
representing instances. A higher value of the MQE means that the layer does
not represent the input data well and requires more neurons to better represent
the input domain. Moreover, when a single neuron is still not representing the
surrounding instances, then the neuron is expanded as a SOM hierarchically (see
figure 1).

Fig. 1. A Growing Hierarchical Self Organizing Map.

3 Spark-GHSOM for Anomaly Detection

The training process of the Spark-GHSOM follows the classical process of the
GHSOM training, except for the use of a different function for the calculation
of the distance between the input vector and the neurons of the feature map,
since the Euclidean distance is not computable on categorical attributes. For
this reason, the hierarchical distance was chosen [6][2].

The hierarchy obtained can thus be used to solve an anomaly detection task.
In particular, when a new input vector is supplied to the hierarchy, the algorithm
looks for the SOM that succeeds in better approximating the input data (that
is, the SOM with the shortest distance with respect to the input vector). Once
found, it is used to carry out the prediction for the new input data, based on the
distance between the input vector and the closest neuron (the winner neuron)
in the map.

More formally, let xi be the new example to be considered, and let e(xi) =
argmine dist(xi, e) the closest neuron to xi according to the distance measure
described before, the example is considered an anomaly if the following inequality
holds:

dist(xi, e(xi)) > (davg + tf ∗ σ) (3)

In the formula, davg is the average distance among the training instances and
the neurons of the model after the training, σ the standard deviation of such
distances, and tf the user-defined threshold.

Anomaly Detection for Physical Threat Intelligence 5

As data distributions tend to change over time, it may be necessary to update
the knowledge of the anomaly detector using more recent data. For this reason,
Spark-GHSOM for anomaly detection provides the possibility to update the
weights vectors of the neurons while keeping the generated hierarchy unchanged.
This process can be particularly useful if end users do not have enough time or
data availability to train a new anomaly detector from scratch. Consequently,
having a pre-trained model already available, it is possible to provide the model
with a micro-batch of data, in order to update the knowledge extracted by the
model and adapt it to the user’s needs. This aspect is particularly useful in our
case, where data generated by the sensors can be relatively few.

The anomaly detector could produce different types of output depending on
the level of detail. The simplest approach provides feedback for the current data
in the form of a Boolean response. This kind of output could support raising an
alert if the response is equal to “anomaly”.

This approach presents the advantage that is simple to handle and transmits
the prediction as a binary variable (e.g., anomaly/normal, 0/1, true/false). Its
drawback is that it makes it difficult for the end-user to interpret the raised
alert/anomaly. Therefore, a more informative approach could be considered by
combining the previous one with a ranking of the variables (feature ranking)
according to their importance, indicating the contribution to catching the vari-
able’s anomaly.

Feature ranking is a ranking of the entire set of features composing the data
collection, ordered with respect to the feature importance. Feature importance
is a numerical value between 0 and 1, which expresses how anomalous the value
expressed by the feature is with respect to the data collection, such that the sum
of all the features importance in the feature ranking is equal to 1. The importance
score is determined starting from a distance function between the current data
under analysis and the winner neuron. Specifically, the ranking is proportional
to the contribution provided by the single feature in the Euclidean distance
between xi and e(xi). More formally, the ranking function for the instance xi,
rf (xi), is computed as follows:

rf (xi) =
(xi[l]− e(xi)[l])

2∑
l′(xi[l′]− e(xi)[l′])2

(4)

where l represents the feature index.

This approach helps to identify the feature(s) that most contributed to the
anomaly and, therefore, the ”reason” for the anomaly.

Experiments

The experiments were conducted for the city of Oslo (Norway) by considering
two real domains for the following analyses: air pollution and public transport
traffic.

6 P. Mignone et al.

Air pollution analysis

The proposed method was tested using data coming from air quality monitoring
sensors to identify pollutant concentrations deemed abnormal.

At each location, different pollutants are monitored by the sensors:

– Hjortnes: NO, NO2, NOx, PM10 and PM2.5

– Loallmenningen: NO, NO2, NOx, PM1, PM10 and PM2.5

– Spikersuppa: PM10 and PM2.5

The information on the concentration of pollutants comes with both a timestamp
and the geo-coordinates (latitude and longitude), so that the time series can be
reconstructed. Data, which is publicly available, can be downloaded through a
REST API 3.

The period considered for training was from January 2021 to September
2021, with an hourly sampling rate, totalling 18.286 data points from the cho-
sen locations. The period considered for testing is October 2021, totalling 720
acquisitions from the chosen locations. The best value for the parameter tf has
been selected according to an internal cross-validation on the training instances
in the interval [0, 15].

Figure 2 shows the concentrations per hour of NO, NOx, and NO2 pollutants
during the identified test period, i.e., October 2021, from the station of Hjortnes.
The choice fell on these pollutants because they are present within the top-
3 of the feature ranking, for those time instants considered anomalous by the
algorithm, indicated with black arrows in the graph.

Fig. 2. Concentrations per hour of NO, NOx and NO2 pollutants during October 2021,
from Hjortnes station.

It is worth to note that we did not find an abnormal situation during October
21 at 10 a.m., indicated with a green arrow in Figure 3, when very high con-
centrations of PM1 were recorded, even though at this time point the pollutant
PM1 is correctly present in the first position of the feature ranking.

3 https://api.nilu.no/

Anomaly Detection for Physical Threat Intelligence 7

Fig. 3. Concentrations per hour of PM10 and PM2.5 pollutants during October 2021,
from Hjortnes station.

The motivation is because several pollutants are being observed together and
the sudden increase of concentrations of one of them is sometimes not sufficient
to classify the time instant as a potential abnormal situation.

Figure 4 shows the concentration per hour of PM1 pollutant during the test
period, from Loallmenningen. For this place, PM1 is the most decisive pollutant
for the detection of abnormal situations that occurred during October 2021.

Fig. 4. Concentrations per hour of PM1 pollutant during October 2021, from Loall-
menningen station.

As in the previous graphs, the black arrows indicate the time instants in
which we detected abnormal concentrations of the pollutants considered. As
expected, the algorithm was able to correctly detect high concentrations of the
PM1 pollutant.

However, on October 26 at 9 p.m., indicated by the green arrow, the con-
centrations of PM1 were very similar to those of October 27 at 4 p.m., but only
in the latter case, an anomalous situation was found by the algorithm. A more
detailed graph is shown in Figure 5.

The reason is due to a sudden increase in concentrations of the remaining
pollutants, which occurred on October 27 at 4 p.m. This situation, as shown

8 P. Mignone et al.

Fig. 5. A zoom in with respect to the time interval for PM1 pollutant during October
2021, from Loallmenningen station.

in Figure 6, allowed the algorithm to identify an anomalous situation at this
timestamp.

Fig. 6. Concentrations per hour of NO, NO2, PM10 and PM2.5 pollutants during
October 2021, from Loallmenningen station.

Figure 7 shows the concentrations per hour of PM10 and PM2.5 pollutants
during the test period, from the area of Spikersuppa. The pollutants shown in the
graph are the only ones the station can monitor. As expected, the algorithm did
not identify any situations deemed abnormal for this place, as the concentrations
of October are quite regular.

Public transport traffic

This data consists of one week of data regarding Oslo’s public transport. The
instances represent GPS-tracked busses with latitude and longitude. Each in-
stance is timestamped according to the standard ISO 8601 with a resolution in
seconds. The Service Interface for Real time Information - Vehicle Monitoring

Anomaly Detection for Physical Threat Intelligence 9

Fig. 7. Concentrations per hour of PM10 and PM2.5 pollutants during October 2021,
from Spikersuppa station.

(SIRI-VM) is used to model vehicle-movements and their progress compared to
a planned timetable 4.

Fig. 8. The data processing pipeline

For this dataset, the processing pipeline illustrated in Figure 8 was exe-
cuted. Therefore, starting from the week of data from Oslo traffic transport, we
performed data cleaning in order to fix some encoding issues. We also aggre-
gated data by 5-minutes interval periods and by spatial areas according to some
preliminary clustering. This step was crucial since the data provided refer to
movable points in the map making the aggregation operations unfeasible. Clus-
tering on the spatial location was performed by exploiting K-Means algorithm
[5]. The variables of the considered data were extended by considering the clus-
ter identifier (cluster ID) and the cluster’s centroid latitude and longitude to
the data. Since K-Means algorithm needs the number of clusters to identify, we
performed the well-known silhouette cluster analysis [7] with the aim to identify
the number of areas for monitoring the traffic. According to silhouette analysis,
we considered 100 different regions for traffic monitoring (see Figure 9).

The instances are therefore grouped by two levels: first the time, then the
cluster id previously identified. Various new features are computed as part of the
aggregation (e.g., the average “delay” of the buses in seconds) for each identified
clustered monitoring area. Multiple train and test sets were created as illustrated
in figure 10. The n-th evaluation step uses n hours for training, and the (n +

4 https://api.entur.io/realtime/v1/rest/vm?datasetId=RUT

10 P. Mignone et al.

Fig. 9. The Oslo street map and the best locations for monitoring traffic according to
the clustering step.

1)-th hour for testing. The 10% of the available test windows are perturbed
randomly selecting 3 columns for each instance and randomly assigning a new
value for each selected feature. These test windows are considered as anomalous.
The remaining 90% of the available test windows are used without perturbation
and considered non-anomalous for the evaluation. The aim of this setting is
to perform an evaluation based on landmark windows. The best value for the
parameter tf has been selected according to an internal cross-validation on the
training instances in the interval [0, 15].

Fig. 10. Training and testing sets.

In Figure 11 hour-by-hour histograms are reported for the first day. Stacked
green bars indicate the correct predictions, while the red ones the wrong predic-
tions. The red text in the date indicates that the window is perturbed (anomaly).
The top label contains the total number of instances in the test set. During nor-

Anomaly Detection for Physical Threat Intelligence 11

mal windows, the anomaly detector results are effective since false positives are
generally avoided. Most of the normal scenarios that occurred during different
time slots (in the morning, afternoon, evening, and night) were recognized as
normal situations: 99.7% accuracy (we have only 5 false positives at the begin-
ning, when the model is still unstable). From the figure, we can also see that
the system identifies many false negatives at the beginning [01:40-03:40]. This
is expected since the model is still unstable to detect anomalies. Moreover, the
lack of data, due to the lack of public transport late in the night (or early in the
morning, only 48 instances), further complicated the problem. During the day,
after 22 hours of training, the anomaly detector appears to be much more sta-
ble and capable to predict most of the anomalies occurred during the two-hours
anomalous time slot [16:40-18:40] in the afternoon. After 26 hours of training,
the anomaly detector becomes further stable and capable to predict most of the
anomalies occurred during the anomalous time slot [20:40-21:40] in the evening.
After 28 hours of training, the anomaly detector becomes further more stable
and capable to predict most of the anomalies occurred during the anomalous
time slot [05:40-06:40] in the evening/early morning.

Fig. 11. Hour-by-hour histograms indicating True positives, True negatives, False pos-
itives and False negatives for the first day of data.

accuracy precision recall f1-score

91.33% 99.77% 85.74% 92.22%
Table 1. Oslo public transport traffic: quantitative results in terms of accuracy, pre-
cision, recall, and f1-score.

In table 1, where we report the overall quantitative results which confirm
the fact that the algorithm, after sufficient data for training, shows very high
prediction scores, with very high precision.

12 P. Mignone et al.

Conclusions

In this paper, we tackle the task of anomaly detection. For this purpose we
extended the algorithm SparkGHSOM, originally designed for the clustering
task, in order to consider the task at hand. Furthermore, the main algorithm
has been made more explainable by providing the reasons for each detected
anomaly in the form of an instance-based feature ranking. The results show the
effectiveness of the proposed approach both qualitatively and quantitatively in
real application scenarios. For future work, we aim to perform further and more
robust experiments with the aim to better evaluate the predictive quality, the
explainability, and the scalability of this new extended version of SparkGHSOM.

Acknowledgment
We acknowledge the project IMPETUS (Intelligent Management of Processes,
Ethics and Technology for Urban Safety) that receives funding from the Eu-
ropean Union’s Horizon 2020 research and innovation programme under grant
agreement No. 883286. https://cordis.europa.eu/project/id/883286. Dr. Paolo
Mignone acknowledges the support of Apulia Region through the REFIN project
“Metodi per l’ottimizzazione delle reti di distribuzione di energia e per la piani-
ficazione di interventi manutentivi ed evolutivi” (CUP H94I20000410008, Grant
n. 7EDD092A).

References

1. Gonçalves Jr, P.M., Barros, R.S.: Rcd: A recurring concept drift
framework. Pattern Recognition Letters 34(9), 1018 – 1025 (2013).
https://doi.org/10.1016/j.patrec.2013.02.005

2. Hsu, C.C.: Generalizing self-organizing map for categorical data.
IEEE Transactions on Neural Networks 17(2), 294–304 (2006).
https://doi.org/10.1109/TNN.2005.863415

3. Kader, G.D., Perry, M.: Variability for categorical variables. Journal of Statistics
Education 15(2) (2007). https://doi.org/10.1080/10691898.2007.11889465

4. Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464–1480
(1990). https://doi.org/10.1109/5.58325

5. Lloyd, S.: Least squares quantization in pcm. IEEE Transactions on Information
Theory 28(2), 129–137 (1982). https://doi.org/10.1109/TIT.1982.1056489

6. Malondkar, A., Corizzo, R., Kiringa, I., Ceci, M., Japkowicz, N.: Spark-ghsom:
Growing hierarchical self-organizing map for large scale mixed attribute datasets.
Information Sciences (2018). https://doi.org/10.1016/j.ins.2018.12.007

7. Rousseeuw, P.J.: Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. Journal of Computational and Applied Mathematics 20, 53 – 65
(1987). https://doi.org/10.1016/0377-0427(87)90125-7

8. Stojanova, D., Ceci, M., Appice, A., Džeroski, S.: Network regression with predictive
clustering trees. Data Mining and Knowledge Discovery 25(2), 378 – 413 (2012).
https://doi.org/10.1007/s10618-012-0278-6

