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INTRODUCTION

In many machine learning applications, it is difficult or expensive to obtain training data described through the same
feature space and following the same data distribution of the examples where the predictive model will be applied.

DATASETS

GENE REGULATORY NETWORK RECONSTRUCTION (BIOINFORMATICS)

HET HOM HOM-RED

TASK: LINK PREDICTION

SETTING: POSITIVE-UNLABELED LEARNING
TARGET DOMAIN: HOMO SAPIENS ORGANISM
SOURCE DOMAIN: MOUSE ORGANISM

Learn a predictive function for a target domain by exploiting also data

from a separate, but related domain, called source domain.

The adoption of transfer learning techniques also increases the

sustainability of the training process, since:

- may reduce the human resources required to gather labeled data

- may reduce the computational resources, by reusing models already
trained in other contexts
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Available Dataset: https://data.d4science.net/xQ7P
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BACKGROUND

A domain is defined as D = {F, P(X)}, where F is a feature space, X is a set of observations, P(X) is the marginal
probability distribution over X.
A task is defined as T = {Y, f}, where Y is the output space of the prediction task; f is a predictive function learned
from a set of training examples in the form {x,, y;}, where x, € Xand y; € V.

D, = {F,, P(X.)} > source domain T.={Y,, f,} = source task

D, = {F, P(X,)} = target domain T.={Y, f,} = target task

CEREBRAL STROKE DETECTION (MEDICAL)

FULL REDUCED

TASK: BINARY CLASSIFICATION

SETTING: SUPERVISED LEARNING

TARGET DOMAIN: CEREBRAL STROKE IN HOSPITAL PATIENTS
SOURCE DOMAIN: SEPSIS IN HOSPITAL PATIENTS

# instances Stroke Sepsis Stroke Sepsis
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Considered setting: Heterogeneous Transfer Learning Available Dataset: https://data.d4science.net/eEn3
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STAGE 1 — FEATURE ALIGNMENT
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CEREBRAL STROKE DETECTION - CLASSIFICATION
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STAGE 3 — DISTRIBUTED MODEL TRAINING
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All the stages are implemented using the Apache Spark framework following the MapReduce paradigm. ——1node -e-2nodes —e3nodes
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The final predictive model is learned from the obtained hybrid dataset using a distributed version of Random Forests
available in Apache Spark.
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