

SPOKE 6 / WP 6 DISTRIBUTED HETEROGENEOUS TRANSFER LEARNING

Paolo Mignone, Gianvito Pio, Michelangelo Ceci

	INTRODUCTION		ATASETS						
In many machine learning applications, it feature space and following the <u>same dat</u>	: is difficult or expensive to obtain training data described through the <u>same</u> ta distribution of the examples where the predictive model will be applied.	GENE REGULATORY NETWORK		UCTION (BIOIN	FORM/	ATICS)		
- Transfer Learning	Learn a predictive function for a target domain by exploiting also data	TASK: LINK PREDICTION		HET Human M	HO Mouse Hr	M uman Mo	HOM use Hum	i-RED an Mous	 ;e
	from a separate, but related domain, called source domain. The adoption of transfer learning techniques also increases the sustainability of the training process, since:	SETTING: POSITIVE-UNLABELED LEARNING TARGET DOMAIN: HOMO SAPIENS ORGANISM SOURCE DOMAIN: MOUSE ORGANISM	Positive interactions Unlabeled interactions Gene features Gene-pair features	235,706 14 235,706 235 174 348	4,613 235 5,706 235 161 322	5,706 14,6 5,706 235,7 6 12	13 4,7 06 4,7 6 12	14 4,714 14 4,714 6 (12 1:	4 4 6 2
BACKGROUND	 may reduce the human resources required to gather labeled data may reduce the computational resources, by reusing models already trained in other contexts 	Available Dataset: <u>https://data.d4science.net/xQ7P</u>							
A domain is defined as $D = \{F, P(X)\}, w$	where F is a feature space, X is a set of observations, P(X) is the marginal	CEREBRAL STROKE DETECTION (MEDICAL)							
A task is defined as $T = \{Y, f\}$, where Y is	s the output space of the prediction task; <i>f</i> is a predictive function learned	TASK: BINARY CLASSIFICATION	<i>#</i> ii	astancos	FULL	Consis	REDUCED) Songia	
from a set of training examples in the for $D_s = \{F_s, P(X_s)\}$ $D_t = \{F_t, P(X_t)\}$	m { x_i, y_i }, where $x_i \in X$ and $y_i \in Y$. \rightarrow source domain $T_s = {Y_s, f_s} \rightarrow$ source task \rightarrow target domain $T_t = {Y_t, f_t} \rightarrow$ target task	SETTING: SUPERVISED LEARNING TARGET DOMAIN: CEREBRAL STROKE IN HOSPITAL P/ SOURCE DOMAIN: SEPSIS IN HOSPITAL PATIENTS	ATIENTS rela sing tota	psed_stroke/died ;le_stroke/survived .l	б43 41,288 41,931	11,735 117,657 129,392	643 643 1,286	Sepsis 1,173 1,173 2,346	
Considered se	etting: Heterogeneous Transfer Learning	Available Dataset:	https://data.d4s	cience.net/el	En3				

 $F_s \neq F_t$ and $P(X_s) \neq P(X_t)$

THE PROPOSED METHOD STEAL

STAGE 1 – FEATURE ALIGNMENT

STAGE 2 – SOURCE-TARGET INSTANCE MATCHING

ENERGY CONSUMPTION FORECASTING

TASK: REGRESSION	Fold	Training period	Testing period	Source Training instances	Target Training instances	Testing instances
SETTING: SUPERVISED LEARNING	1	2010-2011	2012-2019	924	912	14,688
TARGET DOMAIN:	2	2010-2012	2013-2019	1,848	1824	12,852
ENERGY CONSUMPTION OF A SET OF CLIENTS	3	2010-2013	2014-2019	2,772	2,736	11,016
SOLIDCE DOMAIN.	4	2010-2014	2015-2019	3,696	3,648	9,180
SOURCE DOWAIN.	5	2010-2015	2016-2019	4,620	4,560	7,344
ENERGY CONSUMPTION OF ANOTHER SET OF	6	2010-2016	2017-2019	5,544	5,472	5,508
CLIENTS	7	2010-2017	2018-2019	6,468	6,384	3,672
	8	2010-2018	2019	7,392	7,296	1,836

RESULTS

GENE REGULATORY RECONSTRUCTION – PU LEARNING

HETEROGENEOUS		HOMOGENEOUS			REDUCED		
Method	AUR@K	Impr. over T	Method	AUR@K	Impr. over T	Method	HOM-RED
T (no transfer)	0.610	-	T (no transfer)	0.533	-	JGSA	0.500
STEAL	0.679	11.3%	S (optimal feature alignment)	0.544	2.1%	TJM	0.554
			T+S (optimal feature alignment)	0.551	3.4%	BDA	0.558
			STEAL	0.680	27.6%	JDOT	0.540
						STEAL	0.589

CEREBRAL STROKE DETECTION - CLASSIFICATION

HETEROGENEOUS								
Method	Acc	Macro Prec	Macro Rec	Macro F1-score	Weighted Prec	Weighted Rec	Weighted F1-score	
T (no transfer)	0.902	0.526	0.647	0.528	0.975	0.902	0.935	
STEAL	0.942	0.530	0.597	0.540	0.974	0.942	0.957	
STEAL	0.942	0.530	0.597	0.540	0.974	0.942	0.957	

The final predictive model is learned from the obtained hybrid dataset using a distributed version of Random Forests available in Apache Spark.

				REDUC	ED				
Method	Acc	Macro Prec	Macro Rec	Macro F1-score	Weighted Prec	Weighted Rec	Weighted F1-score		
JGSA	0.575	0.589	0.575	0.557	0.589	0.575	0.557		
TJM	0.655	0.656	0.655	0.654	0.656	0.655	0.654		
BDA	0.674	0.675	0.674	0.673	0.675	0.674	0.674		
JDOT	0.551	0.551	0.551	0.550	0.551	0.551	0.550		
STEAL	0.768	0.773	0.768	0.767	0.773	0.768	0.767		

ENERGY CONSUMPTION FORECASTING - REGRESSION

SCALABILITY ANALYSIS

REFERENCE

Paolo Mignone, Gianvito Pio, Michelangelo Ceci, Distributed Heterogeneous Transfer Learning, Big Data Research, Volume 37, 2024, 100456, ISSN 2214-5796, <u>https://doi.org/10.1016/j.bdr.2024.100456</u> Available Software: https://figshare.com/articles/software/STEAL/19482533

